#include #include #include #include #include #include #include "ephemeris.h" #include "bncutils.h" #include "timeutils.h" #include "bnctime.h" using namespace std; // //////////////////////////////////////////////////////////////////////////// bool t_eph::isNewerThan(const t_eph* eph) const { if (_GPSweek > eph->_GPSweek || (_GPSweek == eph->_GPSweek && _GPSweeks > eph->_GPSweeks)) { return true; } else { return false; } } // Set GPS Satellite Position //////////////////////////////////////////////////////////////////////////// void t_ephGPS::set(const gpsephemeris* ee) { ostringstream prn; prn << 'G' << setfill('0') << setw(2) << ee->satellite; _prn = prn.str(); // TODO: check if following two lines are correct _GPSweek = ee->GPSweek; _GPSweeks = ee->TOE; _TOW = ee->TOW; _TOC = ee->TOC; _TOE = ee->TOE; _IODE = ee->IODE; _IODC = ee->IODC; _clock_bias = ee->clock_bias ; _clock_drift = ee->clock_drift ; _clock_driftrate = ee->clock_driftrate; _Crs = ee->Crs; _Delta_n = ee->Delta_n; _M0 = ee->M0; _Cuc = ee->Cuc; _e = ee->e; _Cus = ee->Cus; _sqrt_A = ee->sqrt_A; _Cic = ee->Cic; _OMEGA0 = ee->OMEGA0; _Cis = ee->Cis; _i0 = ee->i0; _Crc = ee->Crc; _omega = ee->omega; _OMEGADOT = ee->OMEGADOT; _IDOT = ee->IDOT; _TGD = ee->TGD; } // Compute GPS Satellite Position (virtual) //////////////////////////////////////////////////////////////////////////// void t_ephGPS::position(int GPSweek, double GPSweeks, double* xc, double* vv) const { static const double secPerWeek = 7 * 86400.0; static const double omegaEarth = 7292115.1467e-11; static const double gmWGS = 398.6005e12; memset(xc, 0, 4*sizeof(double)); memset(vv, 0, 3*sizeof(double)); double a0 = _sqrt_A * _sqrt_A; if (a0 == 0) { return; } double n0 = sqrt(gmWGS/(a0*a0*a0)); double tk = GPSweeks - _TOE; if (GPSweek != _GPSweek) { tk += (GPSweek - _GPSweek) * secPerWeek; } double n = n0 + _Delta_n; double M = _M0 + n*tk; double E = M; double E_last; do { E_last = E; E = M + _e*sin(E); } while ( fabs(E-E_last)*a0 > 0.001 ); double v = 2.0*atan( sqrt( (1.0 + _e)/(1.0 - _e) )*tan( E/2 ) ); double u0 = v + _omega; double sin2u0 = sin(2*u0); double cos2u0 = cos(2*u0); double r = a0*(1 - _e*cos(E)) + _Crc*cos2u0 + _Crs*sin2u0; double i = _i0 + _IDOT*tk + _Cic*cos2u0 + _Cis*sin2u0; double u = u0 + _Cuc*cos2u0 + _Cus*sin2u0; double xp = r*cos(u); double yp = r*sin(u); double OM = _OMEGA0 + (_OMEGADOT - omegaEarth)*tk - omegaEarth*_TOE; double sinom = sin(OM); double cosom = cos(OM); double sini = sin(i); double cosi = cos(i); xc[0] = xp*cosom - yp*cosi*sinom; xc[1] = xp*sinom + yp*cosi*cosom; xc[2] = yp*sini; double tc = GPSweeks - _TOC; if (GPSweek != _GPSweek) { tc += (GPSweek - _GPSweek) * secPerWeek; } xc[3] = _clock_bias + _clock_drift*tc + _clock_driftrate*tc*tc; // Velocity // -------- double tanv2 = tan(v/2); double dEdM = 1 / (1 - _e*cos(E)); double dotv = sqrt((1.0 + _e)/(1.0 - _e)) / cos(E/2)/cos(E/2) / (1 + tanv2*tanv2) * dEdM * n; double dotu = dotv + (-_Cuc*sin2u0 + _Cus*cos2u0)*2*dotv; double dotom = _OMEGADOT - omegaEarth; double doti = _IDOT + (-_Cic*sin2u0 + _Cis*cos2u0)*2*dotv; double dotr = a0 * _e*sin(E) * dEdM * n + (-_Crc*sin2u0 + _Crs*cos2u0)*2*dotv; double dotx = dotr*cos(u) - r*sin(u)*dotu; double doty = dotr*sin(u) + r*cos(u)*dotu; vv[0] = cosom *dotx - cosi*sinom *doty // dX / dr - xp*sinom*dotom - yp*cosi*cosom*dotom // dX / dOMEGA + yp*sini*sinom*doti; // dX / di vv[1] = sinom *dotx + cosi*cosom *doty + xp*cosom*dotom - yp*cosi*sinom*dotom - yp*sini*cosom*doti; vv[2] = sini *doty + yp*cosi *doti; // Relativistic Correction // ----------------------- // xc(4) -= 4.442807633e-10 * _e * sqrt(a0) *sin(E); xc[3] -= 2.0 * (xc[0]*vv[0] + xc[1]*vv[1] + xc[2]*vv[2]) / t_CST::c / t_CST::c; } // Derivative of the state vector using a simple force model (static) //////////////////////////////////////////////////////////////////////////// ColumnVector t_ephGlo::glo_deriv(double /* tt */, const ColumnVector& xv) { // State vector components // ----------------------- ColumnVector rr = xv.rows(1,3); ColumnVector vv = xv.rows(4,6); // Acceleration // ------------ static const double GM = 398.60044e12; static const double AE = 6378136.0; static const double OMEGA = 7292115.e-11; static const double C20 = -1082.63e-6; double rho = rr.norm_Frobenius(); double t1 = -GM/(rho*rho*rho); double t2 = 3.0/2.0 * C20 * (GM*AE*AE) / (rho*rho*rho*rho*rho); double t3 = OMEGA * OMEGA; double t4 = 2.0 * OMEGA; double z2 = rr(3) * rr(3); // Vector of derivatives // --------------------- ColumnVector va(6); va(1) = vv(1); va(2) = vv(2); va(3) = vv(3); va(4) = (t1 + t2*(1.0-5.0*z2/(rho*rho)) + t3) * rr(1) + t4*vv(2); va(5) = (t1 + t2*(1.0-5.0*z2/(rho*rho)) + t3) * rr(2) - t4*vv(1); va(6) = (t1 + t2*(3.0-5.0*z2/(rho*rho)) ) * rr(3); return va; } // Compute Glonass Satellite Position (virtual) //////////////////////////////////////////////////////////////////////////// void t_ephGlo::position(int GPSweek, double GPSweeks, double* xc, double* vv) const { static const double secPerWeek = 7 * 86400.0; static const double nominalStep = 10.0; memset(xc, 0, 4*sizeof(double)); memset(vv, 0, 3*sizeof(double)); double dtPos = GPSweeks - _tt; if (GPSweek != _GPSweek) { dtPos += (GPSweek - _GPSweek) * secPerWeek; } int nSteps = int(fabs(dtPos) / nominalStep) + 1; double step = dtPos / nSteps; for (int ii = 1; ii <= nSteps; ii++) { _xv = rungeKutta4(_tt, _xv, step, glo_deriv); _tt += step; } // Position and Velocity // --------------------- xc[0] = _xv(1); xc[1] = _xv(2); xc[2] = _xv(3); vv[0] = _xv(4); vv[1] = _xv(5); vv[2] = _xv(6); // Clock Correction // ---------------- double dtClk = GPSweeks - _GPSweeks; if (GPSweek != _GPSweek) { dtClk += (GPSweek - _GPSweek) * secPerWeek; } xc[3] = -_tau + _gamma * dtClk; } // IOD of Glonass Ephemeris (virtual) //////////////////////////////////////////////////////////////////////////// int t_ephGlo::IOD() const { bool old = false; if (old) { // 5 LSBs of iod are equal to 5 LSBs of tb unsigned int tb = int(fmod(_GPSweeks,86400.0)); //sec of day const int shift = sizeof(tb) * 8 - 5; unsigned int iod = tb << shift; return (iod >> shift); } else { bncTime tGPS(_GPSweek, _GPSweeks); int hlpWeek = _GPSweek; int hlpSec = int(_GPSweeks); int hlpMsec = int(_GPSweeks * 1000); updatetime(&hlpWeek, &hlpSec, hlpMsec, 0); bncTime tHlp(hlpWeek, hlpSec); double diffSec = tGPS - tHlp; bncTime tMoscow = tGPS + diffSec; return int(tMoscow.daysec() / 900); } } // Set Glonass Ephemeris //////////////////////////////////////////////////////////////////////////// void t_ephGlo::set(const glonassephemeris* ee) { ostringstream prn; prn << 'R' << setfill('0') << setw(2) << ee->almanac_number; _prn = prn.str(); int ww = ee->GPSWeek; int tow = ee->GPSTOW; updatetime(&ww, &tow, ee->tb*1000, 0); // Moscow -> GPS _GPSweek = ww; _GPSweeks = tow; _E = ee->E; _tau = ee->tau; _gamma = ee->gamma; _x_pos = ee->x_pos; _x_velocity = ee->x_velocity; _x_acceleration = ee->x_acceleration; _y_pos = ee->y_pos; _y_velocity = ee->y_velocity; _y_acceleration = ee->y_acceleration; _z_pos = ee->z_pos; _z_velocity = ee->z_velocity; _z_acceleration = ee->z_acceleration; _health = 0; _frequency_number = ee->frequency_number; _tki = ee->tk-3*60*60; if (_tki < 0) _tki += 86400; // Initialize status vector // ------------------------ _tt = _GPSweeks; _xv(1) = _x_pos * 1.e3; _xv(2) = _y_pos * 1.e3; _xv(3) = _z_pos * 1.e3; _xv(4) = _x_velocity * 1.e3; _xv(5) = _y_velocity * 1.e3; _xv(6) = _z_velocity * 1.e3; }