#include #include #include #include #include #include #include "ephemeris.h" #include "bncutils.h" #include "timeutils.h" #include "bnctime.h" #include "bncapp.h" using namespace std; // Returns CRC24 //////////////////////////////////////////////////////////////////////////// static unsigned long CRC24(long size, const unsigned char *buf) { unsigned long crc = 0; int ii; while (size--) { crc ^= (*buf++) << (16); for(ii = 0; ii < 8; ii++) { crc <<= 1; if (crc & 0x1000000) { crc ^= 0x01864cfb; } } } return crc; } // Set GPS Satellite Position //////////////////////////////////////////////////////////////////////////// void t_ephGPS::set(const gpsephemeris* ee) { _prn = QString("G%1").arg(ee->satellite, 2, 10, QChar('0')); _TOC.set(ee->GPSweek, ee->TOC); _clock_bias = ee->clock_bias; _clock_drift = ee->clock_drift; _clock_driftrate = ee->clock_driftrate; _IODE = ee->IODE; _Crs = ee->Crs; _Delta_n = ee->Delta_n; _M0 = ee->M0; _Cuc = ee->Cuc; _e = ee->e; _Cus = ee->Cus; _sqrt_A = ee->sqrt_A; _TOEsec = ee->TOE; _Cic = ee->Cic; _OMEGA0 = ee->OMEGA0; _Cis = ee->Cis; _i0 = ee->i0; _Crc = ee->Crc; _omega = ee->omega; _OMEGADOT = ee->OMEGADOT; _IDOT = ee->IDOT; _L2Codes = 0.0; _TOEweek = ee->GPSweek; _L2PFlag = 0.0; if (ee->URAindex <= 6) { _ura = ceil(10.0*pow(2.0, 1.0+((double)ee->URAindex)/2.0))/10.0; } else { _ura = ceil(10.0*pow(2.0, ((double)ee->URAindex)/2.0))/10.0; } _health = ee->SVhealth; _TGD = ee->TGD; _IODC = ee->IODC; _TOT = 0.9999e9; _fitInterval = 0.0; _ok = true; } // Compute GPS Satellite Position (virtual) //////////////////////////////////////////////////////////////////////////// void t_ephGPS::position(int GPSweek, double GPSweeks, double* xc, double* vv) const { static const double omegaEarth = 7292115.1467e-11; static const double gmWGS = 398.6005e12; memset(xc, 0, 4*sizeof(double)); memset(vv, 0, 3*sizeof(double)); double a0 = _sqrt_A * _sqrt_A; if (a0 == 0) { return; } double n0 = sqrt(gmWGS/(a0*a0*a0)); bncTime tt(GPSweek, GPSweeks); double tk = tt - bncTime(_TOEweek, _TOEsec); double n = n0 + _Delta_n; double M = _M0 + n*tk; double E = M; double E_last; do { E_last = E; E = M + _e*sin(E); } while ( fabs(E-E_last)*a0 > 0.001 ); double v = 2.0*atan( sqrt( (1.0 + _e)/(1.0 - _e) )*tan( E/2 ) ); double u0 = v + _omega; double sin2u0 = sin(2*u0); double cos2u0 = cos(2*u0); double r = a0*(1 - _e*cos(E)) + _Crc*cos2u0 + _Crs*sin2u0; double i = _i0 + _IDOT*tk + _Cic*cos2u0 + _Cis*sin2u0; double u = u0 + _Cuc*cos2u0 + _Cus*sin2u0; double xp = r*cos(u); double yp = r*sin(u); double OM = _OMEGA0 + (_OMEGADOT - omegaEarth)*tk - omegaEarth*_TOEsec; double sinom = sin(OM); double cosom = cos(OM); double sini = sin(i); double cosi = cos(i); xc[0] = xp*cosom - yp*cosi*sinom; xc[1] = xp*sinom + yp*cosi*cosom; xc[2] = yp*sini; double tc = tt - _TOC; xc[3] = _clock_bias + _clock_drift*tc + _clock_driftrate*tc*tc; // Velocity // -------- double tanv2 = tan(v/2); double dEdM = 1 / (1 - _e*cos(E)); double dotv = sqrt((1.0 + _e)/(1.0 - _e)) / cos(E/2)/cos(E/2) / (1 + tanv2*tanv2) * dEdM * n; double dotu = dotv + (-_Cuc*sin2u0 + _Cus*cos2u0)*2*dotv; double dotom = _OMEGADOT - omegaEarth; double doti = _IDOT + (-_Cic*sin2u0 + _Cis*cos2u0)*2*dotv; double dotr = a0 * _e*sin(E) * dEdM * n + (-_Crc*sin2u0 + _Crs*cos2u0)*2*dotv; double dotx = dotr*cos(u) - r*sin(u)*dotu; double doty = dotr*sin(u) + r*cos(u)*dotu; vv[0] = cosom *dotx - cosi*sinom *doty // dX / dr - xp*sinom*dotom - yp*cosi*cosom*dotom // dX / dOMEGA + yp*sini*sinom*doti; // dX / di vv[1] = sinom *dotx + cosi*cosom *doty + xp*cosom*dotom - yp*cosi*sinom*dotom - yp*sini*cosom*doti; vv[2] = sini *doty + yp*cosi *doti; // Relativistic Correction // ----------------------- xc[3] -= 2.0 * (xc[0]*vv[0] + xc[1]*vv[1] + xc[2]*vv[2]) / t_CST::c / t_CST::c; } // build up RTCM3 for GPS //////////////////////////////////////////////////////////////////////////// #define GPSTOINT(type, value) static_cast(round(value)) #define GPSADDBITS(a, b) {bitbuffer = (bitbuffer<<(a)) \ |(GPSTOINT(long long,b)&((1ULL<= 8) { \ buffer[size++] = bitbuffer>>(numbits-8);numbits -= 8;}} #define GPSADDBITSFLOAT(a,b,c) {long long i = GPSTOINT(long long,(b)/(c)); \ GPSADDBITS(a,i)}; int t_ephGPS::RTCM3(unsigned char *buffer) { unsigned char *startbuffer = buffer; buffer= buffer+3; int size = 0; int numbits = 0; unsigned long long bitbuffer = 0; if (_ura <= 2.40){ _ura = 0; } else if (_ura <= 3.40){ _ura = 1; } else if (_ura <= 6.85){ _ura = 2; } else if (_ura <= 9.65){ _ura = 3; } else if (_ura <= 13.65){ _ura = 4; } else if (_ura <= 24.00){ _ura = 5; } else if (_ura <= 48.00){ _ura = 6; } else if (_ura <= 96.00){ _ura = 7; } else if (_ura <= 192.00){ _ura = 8; } else if (_ura <= 384.00){ _ura = 9; } else if (_ura <= 768.00){ _ura = 10; } else if (_ura <= 1536.00){ _ura = 11; } else if (_ura <= 1536.00){ _ura = 12; } else if (_ura <= 2072.00){ _ura = 13; } else if (_ura <= 6144.00){ _ura = 14; } else{ _ura = 15; } GPSADDBITS(12, 1019) GPSADDBITS(6,_prn.right((_prn.length()-1)).toInt()) GPSADDBITS(10, _TOC.gpsw()) GPSADDBITS(4, _ura) GPSADDBITS(2,_L2Codes) GPSADDBITSFLOAT(14, _IDOT, M_PI/static_cast(1<<30) /static_cast(1<<13)) GPSADDBITS(8, _IODE) GPSADDBITS(16, static_cast(_TOC.gpssec())>>4) GPSADDBITSFLOAT(8, _clock_driftrate, 1.0/static_cast(1<<30) /static_cast(1<<25)) GPSADDBITSFLOAT(16, _clock_drift, 1.0/static_cast(1<<30) /static_cast(1<<13)) GPSADDBITSFLOAT(22, _clock_bias, 1.0/static_cast(1<<30) /static_cast(1<<1)) GPSADDBITS(10, _IODC) GPSADDBITSFLOAT(16, _Crs, 1.0/static_cast(1<<5)) GPSADDBITSFLOAT(16, _Delta_n, M_PI/static_cast(1<<30) /static_cast(1<<13)) GPSADDBITSFLOAT(32, _M0, M_PI/static_cast(1<<30)/static_cast(1<<1)) GPSADDBITSFLOAT(16, _Cuc, 1.0/static_cast(1<<29)) GPSADDBITSFLOAT(32, _e, 1.0/static_cast(1<<30)/static_cast(1<<3)) GPSADDBITSFLOAT(16, _Cus, 1.0/static_cast(1<<29)) GPSADDBITSFLOAT(32, _sqrt_A, 1.0/static_cast(1<<19)) GPSADDBITS(16, static_cast(_TOEsec)>>4) GPSADDBITSFLOAT(16, _Cic, 1.0/static_cast(1<<29)) GPSADDBITSFLOAT(32, _OMEGA0, M_PI/static_cast(1<<30) /static_cast(1<<1)) GPSADDBITSFLOAT(16, _Cis, 1.0/static_cast(1<<29)) GPSADDBITSFLOAT(32, _i0, M_PI/static_cast(1<<30)/static_cast(1<<1)) GPSADDBITSFLOAT(16, _Crc, 1.0/static_cast(1<<5)) GPSADDBITSFLOAT(32, _omega, M_PI/static_cast(1<<30) /static_cast(1<<1)) GPSADDBITSFLOAT(24, _OMEGADOT, M_PI/static_cast(1<<30) /static_cast(1<<13)) GPSADDBITSFLOAT(8, _TGD, 1.0/static_cast(1<<30)/static_cast(1<<1)) GPSADDBITS(6, _health) GPSADDBITS(1, _L2PFlag) GPSADDBITS(1, 0) /* GPS fit interval */ startbuffer[0]=0xD3; startbuffer[1]=(size >> 8); startbuffer[2]=size; unsigned long i = CRC24(size+3, startbuffer); buffer[size++] = i >> 16; buffer[size++] = i >> 8; buffer[size++] = i; size += 3; return size; } // Derivative of the state vector using a simple force model (static) //////////////////////////////////////////////////////////////////////////// ColumnVector t_ephGlo::glo_deriv(double /* tt */, const ColumnVector& xv, double* acc) { // State vector components // ----------------------- ColumnVector rr = xv.rows(1,3); ColumnVector vv = xv.rows(4,6); // Acceleration // ------------ static const double GM = 398.60044e12; static const double AE = 6378136.0; static const double OMEGA = 7292115.e-11; static const double C20 = -1082.6257e-6; double rho = rr.norm_Frobenius(); double t1 = -GM/(rho*rho*rho); double t2 = 3.0/2.0 * C20 * (GM*AE*AE) / (rho*rho*rho*rho*rho); double t3 = OMEGA * OMEGA; double t4 = 2.0 * OMEGA; double z2 = rr(3) * rr(3); // Vector of derivatives // --------------------- ColumnVector va(6); va(1) = vv(1); va(2) = vv(2); va(3) = vv(3); va(4) = (t1 + t2*(1.0-5.0*z2/(rho*rho)) + t3) * rr(1) + t4*vv(2) + acc[0]; va(5) = (t1 + t2*(1.0-5.0*z2/(rho*rho)) + t3) * rr(2) - t4*vv(1) + acc[1]; va(6) = (t1 + t2*(3.0-5.0*z2/(rho*rho)) ) * rr(3) + acc[2]; return va; } // Compute Glonass Satellite Position (virtual) //////////////////////////////////////////////////////////////////////////// void t_ephGlo::position(int GPSweek, double GPSweeks, double* xc, double* vv) const { static const double nominalStep = 10.0; memset(xc, 0, 4*sizeof(double)); memset(vv, 0, 3*sizeof(double)); double dtPos = bncTime(GPSweek, GPSweeks) - _tt; int nSteps = int(fabs(dtPos) / nominalStep) + 1; double step = dtPos / nSteps; double acc[3]; acc[0] = _x_acceleration * 1.e3; acc[1] = _y_acceleration * 1.e3; acc[2] = _z_acceleration * 1.e3; for (int ii = 1; ii <= nSteps; ii++) { _xv = rungeKutta4(_tt.gpssec(), _xv, step, acc, glo_deriv); _tt = _tt + step; } // Position and Velocity // --------------------- xc[0] = _xv(1); xc[1] = _xv(2); xc[2] = _xv(3); vv[0] = _xv(4); vv[1] = _xv(5); vv[2] = _xv(6); // Clock Correction // ---------------- double dtClk = bncTime(GPSweek, GPSweeks) - _TOC; xc[3] = -_tau + _gamma * dtClk; } // IOD of Glonass Ephemeris (virtual) //////////////////////////////////////////////////////////////////////////// int t_ephGlo::IOD() const { bncTime tMoscow = _TOC - _gps_utc + 3 * 3600.0; return int(tMoscow.daysec() / 900); } // Set Glonass Ephemeris //////////////////////////////////////////////////////////////////////////// void t_ephGlo::set(const glonassephemeris* ee) { _prn = QString("R%1").arg(ee->almanac_number, 2, 10, QChar('0')); int ww = ee->GPSWeek; int tow = ee->GPSTOW; updatetime(&ww, &tow, ee->tb*1000, 0); // Moscow -> GPS // Check the day once more // ----------------------- { const double secPerDay = 24 * 3600.0; const double secPerWeek = 7 * secPerDay; int ww_old = ww; int tow_old = tow; int currentWeek; double currentSec; currentGPSWeeks(currentWeek, currentSec); bncTime currentTime(currentWeek, currentSec); bncTime hTime(ww, (double) tow); bool changed = false; if (hTime - currentTime > secPerDay/2.0) { changed = true; tow -= secPerDay; if (tow < 0) { tow += secPerWeek; ww -= 1; } } else if (hTime - currentTime < -secPerDay/2.0) { changed = true; tow += secPerDay; if (tow > secPerWeek) { tow -= secPerWeek; ww += 1; } } if (changed && ((bncApp*) qApp)->mode() == bncApp::batchPostProcessing) { bncTime newHTime(ww, (double) tow); cout << "GLONASS " << ee->almanac_number << " Time Changed at " << currentTime.datestr() << " " << currentTime.timestr() << endl << "old: " << hTime.datestr() << " " << hTime.timestr() << endl << "new: " << newHTime.datestr() << " " << newHTime.timestr() << endl << "eph: " << ee->GPSWeek << " " << ee->GPSTOW << " " << ee->tb << endl << "ww, tow (old): " << ww_old << " " << tow_old << endl << "ww, tow (new): " << ww << " " << tow << endl << endl; } } bncTime hlpTime(ww, (double) tow); unsigned year, month, day; hlpTime.civil_date(year, month, day); _gps_utc = gnumleap(year, month, day); _TOC.set(ww, tow); _E = ee->E; _tau = ee->tau; _gamma = ee->gamma; _x_pos = ee->x_pos; _x_velocity = ee->x_velocity; _x_acceleration = ee->x_acceleration; _y_pos = ee->y_pos; _y_velocity = ee->y_velocity; _y_acceleration = ee->y_acceleration; _z_pos = ee->z_pos; _z_velocity = ee->z_velocity; _z_acceleration = ee->z_acceleration; _health = 0; _frequency_number = ee->frequency_number; _tki = ee->tk-3*60*60; if (_tki < 0) _tki += 86400; // Initialize status vector // ------------------------ _tt = _TOC; _xv(1) = _x_pos * 1.e3; _xv(2) = _y_pos * 1.e3; _xv(3) = _z_pos * 1.e3; _xv(4) = _x_velocity * 1.e3; _xv(5) = _y_velocity * 1.e3; _xv(6) = _z_velocity * 1.e3; _ok = true; } // build up RTCM3 for GLONASS //////////////////////////////////////////////////////////////////////////// #define GLONASSTOINT(type, value) static_cast(round(value)) #define GLONASSADDBITS(a, b) {bitbuffer = (bitbuffer<<(a)) \ |(GLONASSTOINT(long long,b)&((1ULL<<(a))-1)); \ numbits += (a); \ while(numbits >= 8) { \ buffer[size++] = bitbuffer>>(numbits-8);numbits -= 8;}} #define GLONASSADDBITSFLOATM(a,b,c) {int s; long long i; \ if(b < 0.0) \ { \ s = 1; \ i = GLONASSTOINT(long long,(-b)/(c)); \ if(!i) s = 0; \ } \ else \ { \ s = 0; \ i = GLONASSTOINT(long long,(b)/(c)); \ } \ GLONASSADDBITS(1,s) \ GLONASSADDBITS(a-1,i)} int t_ephGlo::RTCM3(unsigned char *buffer) { int size = 0; int numbits = 0; long long bitbuffer = 0; unsigned char *startbuffer = buffer; buffer= buffer+3; GLONASSADDBITS(12, 1020) GLONASSADDBITS(6, _prn.right((_prn.length()-1)).toInt()) GLONASSADDBITS(5, 7+_frequency_number) GLONASSADDBITS(1, 0) GLONASSADDBITS(1, 0) GLONASSADDBITS(2, 0) _tki=_tki+3*60*60; GLONASSADDBITS(5, static_cast(_tki)/(60*60)) GLONASSADDBITS(6, (static_cast(_tki)/60)%60) GLONASSADDBITS(1, (static_cast(_tki)/30)%30) GLONASSADDBITS(1, _health) GLONASSADDBITS(1, 0) unsigned long long timeofday = (static_cast(_tt.gpssec()+3*60*60-_gps_utc)%86400); GLONASSADDBITS(7, timeofday/60/15) GLONASSADDBITSFLOATM(24, _x_velocity*1000, 1000.0/static_cast(1<<20)) GLONASSADDBITSFLOATM(27, _x_pos*1000, 1000.0/static_cast(1<<11)) GLONASSADDBITSFLOATM(5, _x_acceleration*1000, 1000.0/static_cast(1<<30)) GLONASSADDBITSFLOATM(24, _y_velocity*1000, 1000.0/static_cast(1<<20)) GLONASSADDBITSFLOATM(27, _y_pos*1000, 1000.0/static_cast(1<<11)) GLONASSADDBITSFLOATM(5, _y_acceleration*1000, 1000.0/static_cast(1<<30)) GLONASSADDBITSFLOATM(24, _z_velocity*1000, 1000.0/static_cast(1<<20)) GLONASSADDBITSFLOATM(27,_z_pos*1000, 1000.0/static_cast(1<<11)) GLONASSADDBITSFLOATM(5, _z_acceleration*1000, 1000.0/static_cast(1<<30)) GLONASSADDBITS(1, 0) GLONASSADDBITSFLOATM(11, _gamma, 1.0/static_cast(1<<30) /static_cast(1<<10)) GLONASSADDBITS(2, 0) /* GLONASS-M P */ GLONASSADDBITS(1, 0) /* GLONASS-M ln(3) */ GLONASSADDBITSFLOATM(22, _tau, 1.0/static_cast(1<<30)) GLONASSADDBITS(5, 0) /* GLONASS-M delta tau */ GLONASSADDBITS(5, _E) GLONASSADDBITS(1, 0) /* GLONASS-M P4 */ GLONASSADDBITS(4, 0) /* GLONASS-M FT */ GLONASSADDBITS(11, 0) /* GLONASS-M NT */ GLONASSADDBITS(2, 0) /* GLONASS-M active? */ GLONASSADDBITS(1, 0) /* GLONASS additional data */ GLONASSADDBITS(11, 0) /* GLONASS NA */ GLONASSADDBITS(32, 0) /* GLONASS tau C */ GLONASSADDBITS(5, 0) /* GLONASS-M N4 */ GLONASSADDBITS(22, 0) /* GLONASS-M tau GPS */ GLONASSADDBITS(1, 0) /* GLONASS-M ln(5) */ GLONASSADDBITS(7, 0) /* Reserved */ startbuffer[0]=0xD3; startbuffer[1]=(size >> 8); startbuffer[2]=size; unsigned long i = CRC24(size+3, startbuffer); buffer[size++] = i >> 16; buffer[size++] = i >> 8; buffer[size++] = i; size += 3; return size; } // Set Galileo Satellite Position //////////////////////////////////////////////////////////////////////////// void t_ephGal::set(const galileoephemeris* ee) { _prn = QString("E%1").arg(ee->satellite, 2, 10, QChar('0')); _TOC.set(ee->Week, ee->TOC); _clock_bias = ee->clock_bias; _clock_drift = ee->clock_drift; _clock_driftrate = ee->clock_driftrate; _IODnav = ee->IODnav; _Crs = ee->Crs; _Delta_n = ee->Delta_n; _M0 = ee->M0; _Cuc = ee->Cuc; _e = ee->e; _Cus = ee->Cus; _sqrt_A = ee->sqrt_A; _TOEsec = ee->TOE; _Cic = ee->Cic; _OMEGA0 = ee->OMEGA0; _Cis = ee->Cis; _i0 = ee->i0; _Crc = ee->Crc; _omega = ee->omega; _OMEGADOT = ee->OMEGADOT; _IDOT = ee->IDOT; _TOEweek = ee->Week; _SISA = ee->SISA; _E5aHS = ee->E5aHS; _BGD_1_5A = ee->BGD_1_5A; _BGD_1_5B = ee->BGD_1_5B; _TOT = 0.9999e9; _ok = true; } // Compute Galileo Satellite Position (virtual) //////////////////////////////////////////////////////////////////////////// void t_ephGal::position(int GPSweek, double GPSweeks, double* xc, double* vv) const { static const double omegaEarth = 7292115.1467e-11; static const double gmWGS = 398.6005e12; memset(xc, 0, 4*sizeof(double)); memset(vv, 0, 3*sizeof(double)); double a0 = _sqrt_A * _sqrt_A; if (a0 == 0) { return; } double n0 = sqrt(gmWGS/(a0*a0*a0)); bncTime tt(GPSweek, GPSweeks); double tk = tt - bncTime(_TOC.gpsw(), _TOEsec); double n = n0 + _Delta_n; double M = _M0 + n*tk; double E = M; double E_last; do { E_last = E; E = M + _e*sin(E); } while ( fabs(E-E_last)*a0 > 0.001 ); double v = 2.0*atan( sqrt( (1.0 + _e)/(1.0 - _e) )*tan( E/2 ) ); double u0 = v + _omega; double sin2u0 = sin(2*u0); double cos2u0 = cos(2*u0); double r = a0*(1 - _e*cos(E)) + _Crc*cos2u0 + _Crs*sin2u0; double i = _i0 + _IDOT*tk + _Cic*cos2u0 + _Cis*sin2u0; double u = u0 + _Cuc*cos2u0 + _Cus*sin2u0; double xp = r*cos(u); double yp = r*sin(u); double OM = _OMEGA0 + (_OMEGADOT - omegaEarth)*tk - omegaEarth*_TOEsec; double sinom = sin(OM); double cosom = cos(OM); double sini = sin(i); double cosi = cos(i); xc[0] = xp*cosom - yp*cosi*sinom; xc[1] = xp*sinom + yp*cosi*cosom; xc[2] = yp*sini; double tc = tt - _TOC; xc[3] = _clock_bias + _clock_drift*tc + _clock_driftrate*tc*tc; // Velocity // -------- double tanv2 = tan(v/2); double dEdM = 1 / (1 - _e*cos(E)); double dotv = sqrt((1.0 + _e)/(1.0 - _e)) / cos(E/2)/cos(E/2) / (1 + tanv2*tanv2) * dEdM * n; double dotu = dotv + (-_Cuc*sin2u0 + _Cus*cos2u0)*2*dotv; double dotom = _OMEGADOT - omegaEarth; double doti = _IDOT + (-_Cic*sin2u0 + _Cis*cos2u0)*2*dotv; double dotr = a0 * _e*sin(E) * dEdM * n + (-_Crc*sin2u0 + _Crs*cos2u0)*2*dotv; double dotx = dotr*cos(u) - r*sin(u)*dotu; double doty = dotr*sin(u) + r*cos(u)*dotu; vv[0] = cosom *dotx - cosi*sinom *doty // dX / dr - xp*sinom*dotom - yp*cosi*cosom*dotom // dX / dOMEGA + yp*sini*sinom*doti; // dX / di vv[1] = sinom *dotx + cosi*cosom *doty + xp*cosom*dotom - yp*cosi*sinom*dotom - yp*sini*cosom*doti; vv[2] = sini *doty + yp*cosi *doti; // Relativistic Correction // ----------------------- // xc(4) -= 4.442807633e-10 * _e * sqrt(a0) *sin(E); xc[3] -= 2.0 * (xc[0]*vv[0] + xc[1]*vv[1] + xc[2]*vv[2]) / t_CST::c / t_CST::c; } // build up RTCM3 for Galileo //////////////////////////////////////////////////////////////////////////// #define GALILEOTOINT(type, value) static_cast(round(value)) #define GALILEOADDBITS(a, b) {bitbuffer = (bitbuffer<<(a)) \ |(GALILEOTOINT(long long,b)&((1LL<= 8) { \ buffer[size++] = bitbuffer>>(numbits-8);numbits -= 8;}} #define GALILEOADDBITSFLOAT(a,b,c) {long long i = GALILEOTOINT(long long,(b)/(c)); \ GALILEOADDBITS(a,i)}; int t_ephGal::RTCM3(unsigned char *buffer) { int size = 0; int numbits = 0; long long bitbuffer = 0; unsigned char *startbuffer = buffer; buffer= buffer+3; GALILEOADDBITS(12, /*inav ? 1046 :*/ 1045) GALILEOADDBITS(6, _prn.right((_prn.length()-1)).toInt()) GALILEOADDBITS(12, _TOC.gpsw()) GALILEOADDBITS(10, _IODnav) GALILEOADDBITS(8, _SISA) GALILEOADDBITSFLOAT(14, _IDOT, M_PI/static_cast(1<<30) /static_cast(1<<13)) GALILEOADDBITS(14, _TOC.gpssec()/60) GALILEOADDBITSFLOAT(6, _clock_driftrate, 1.0/static_cast(1<<30) /static_cast(1<<29)) GALILEOADDBITSFLOAT(21, _clock_drift, 1.0/static_cast(1<<30) /static_cast(1<<16)) GALILEOADDBITSFLOAT(31, _clock_bias, 1.0/static_cast(1<<30) /static_cast(1<<4)) GALILEOADDBITSFLOAT(16, _Crs, 1.0/static_cast(1<<5)) GALILEOADDBITSFLOAT(16, _Delta_n, M_PI/static_cast(1<<30) /static_cast(1<<13)) GALILEOADDBITSFLOAT(32, _M0, M_PI/static_cast(1<<30)/static_cast(1<<1)) GALILEOADDBITSFLOAT(16, _Cuc, 1.0/static_cast(1<<29)) GALILEOADDBITSFLOAT(32, _e, 1.0/static_cast(1<<30)/static_cast(1<<3)) GALILEOADDBITSFLOAT(16, _Cus, 1.0/static_cast(1<<29)) GALILEOADDBITSFLOAT(32, _sqrt_A, 1.0/static_cast(1<<19)) GALILEOADDBITS(14, _TOEsec/60) GALILEOADDBITSFLOAT(16, _Cic, 1.0/static_cast(1<<29)) GALILEOADDBITSFLOAT(32, _OMEGA0, M_PI/static_cast(1<<30) /static_cast(1<<1)) GALILEOADDBITSFLOAT(16, _Cis, 1.0/static_cast(1<<29)) GALILEOADDBITSFLOAT(32, _i0, M_PI/static_cast(1<<30)/static_cast(1<<1)) GALILEOADDBITSFLOAT(16, _Crc, 1.0/static_cast(1<<5)) GALILEOADDBITSFLOAT(32, _omega, M_PI/static_cast(1<<30) /static_cast(1<<1)) GALILEOADDBITSFLOAT(24, _OMEGADOT, M_PI/static_cast(1<<30) /static_cast(1<<13)) GALILEOADDBITSFLOAT(10, _BGD_1_5A, 1.0/static_cast(1<<30) /static_cast(1<<2)) /*if(inav) { GALILEOADDBITSFLOAT(10, _BGD_1_5B, 1.0/static_cast(1<<30) /static_cast(1<<2)) GALILEOADDBITS(2, _E5bHS) GALILEOADDBITS(1, flags & MNFGALEPHF_E5BDINVALID) } else*/ { GALILEOADDBITS(2, _E5aHS) GALILEOADDBITS(1, /*flags & MNFGALEPHF_E5ADINVALID*/0) } _TOEsec = 0.9999E9; GALILEOADDBITS(20, _TOEsec) GALILEOADDBITS(/*inav ? 1 :*/ 3, 0) /* fill up */ startbuffer[0]=0xD3; startbuffer[1]=(size >> 8); startbuffer[2]=size; unsigned long i = CRC24(size+3, startbuffer); buffer[size++] = i >> 16; buffer[size++] = i >> 8; buffer[size++] = i; size += 3; return size; } // Constructor ////////////////////////////////////////////////////////////////////////////// t_ephGPS::t_ephGPS(float rnxVersion, const QStringList& lines) { const int nLines = 8; _ok = false; if (lines.size() != nLines) { return; } // RINEX Format // ------------ int fieldLen = 19; int pos[4]; pos[0] = (rnxVersion <= 2.12) ? 3 : 4; pos[1] = pos[0] + fieldLen; pos[2] = pos[1] + fieldLen; pos[3] = pos[2] + fieldLen; // Read eight lines // ---------------- for (int iLine = 0; iLine < nLines; iLine++) { QString line = lines[iLine]; if ( iLine == 0 ) { QTextStream in(line.left(pos[1]).toAscii()); int year, month, day, hour, min; double sec; in >> _prn >> year >> month >> day >> hour >> min >> sec; if (_prn.at(0) != 'G') { _prn = QString("G%1").arg(_prn.toInt(), 2, 10, QLatin1Char('0')); } if (year < 80) { year += 2000; } else if (year < 100) { year += 1900; } _TOC.set(year, month, day, hour, min, sec); if ( readDbl(line, pos[1], fieldLen, _clock_bias ) || readDbl(line, pos[2], fieldLen, _clock_drift ) || readDbl(line, pos[3], fieldLen, _clock_driftrate) ) { return; } } else if ( iLine == 1 ) { if ( readDbl(line, pos[0], fieldLen, _IODE ) || readDbl(line, pos[1], fieldLen, _Crs ) || readDbl(line, pos[2], fieldLen, _Delta_n) || readDbl(line, pos[3], fieldLen, _M0 ) ) { return; } } else if ( iLine == 2 ) { if ( readDbl(line, pos[0], fieldLen, _Cuc ) || readDbl(line, pos[1], fieldLen, _e ) || readDbl(line, pos[2], fieldLen, _Cus ) || readDbl(line, pos[3], fieldLen, _sqrt_A) ) { return; } } else if ( iLine == 3 ) { if ( readDbl(line, pos[0], fieldLen, _TOEsec) || readDbl(line, pos[1], fieldLen, _Cic ) || readDbl(line, pos[2], fieldLen, _OMEGA0) || readDbl(line, pos[3], fieldLen, _Cis ) ) { return; } } else if ( iLine == 4 ) { if ( readDbl(line, pos[0], fieldLen, _i0 ) || readDbl(line, pos[1], fieldLen, _Crc ) || readDbl(line, pos[2], fieldLen, _omega ) || readDbl(line, pos[3], fieldLen, _OMEGADOT) ) { return; } } else if ( iLine == 5 ) { if ( readDbl(line, pos[0], fieldLen, _IDOT ) || readDbl(line, pos[1], fieldLen, _L2Codes) || readDbl(line, pos[2], fieldLen, _TOEweek ) || readDbl(line, pos[3], fieldLen, _L2PFlag) ) { return; } } else if ( iLine == 6 ) { if ( readDbl(line, pos[0], fieldLen, _ura ) || readDbl(line, pos[1], fieldLen, _health) || readDbl(line, pos[2], fieldLen, _TGD ) || readDbl(line, pos[3], fieldLen, _IODC ) ) { return; } } else if ( iLine == 7 ) { if ( readDbl(line, pos[0], fieldLen, _TOT) || readDbl(line, pos[1], fieldLen, _fitInterval) ) { return; } } } _ok = true; } // Constructor ////////////////////////////////////////////////////////////////////////////// t_ephGlo::t_ephGlo(float rnxVersion, const QStringList& lines) { const int nLines = 4; _ok = false; if (lines.size() != nLines) { return; } // RINEX Format // ------------ int fieldLen = 19; int pos[4]; pos[0] = (rnxVersion <= 2.12) ? 3 : 4; pos[1] = pos[0] + fieldLen; pos[2] = pos[1] + fieldLen; pos[3] = pos[2] + fieldLen; // Read four lines // --------------- for (int iLine = 0; iLine < nLines; iLine++) { QString line = lines[iLine]; if ( iLine == 0 ) { QTextStream in(line.left(pos[1]).toAscii()); int year, month, day, hour, min; double sec; in >> _prn >> year >> month >> day >> hour >> min >> sec; if (_prn.at(0) != 'R') { _prn = QString("R%1").arg(_prn.toInt(), 2, 10, QLatin1Char('0')); } if (year < 80) { year += 2000; } else if (year < 100) { year += 1900; } _gps_utc = gnumleap(year, month, day); _TOC.set(year, month, day, hour, min, sec); _TOC = _TOC + _gps_utc; if ( readDbl(line, pos[1], fieldLen, _tau ) || readDbl(line, pos[2], fieldLen, _gamma) || readDbl(line, pos[3], fieldLen, _tki ) ) { return; } _tau = -_tau; } else if ( iLine == 1 ) { if ( readDbl(line, pos[0], fieldLen, _x_pos ) || readDbl(line, pos[1], fieldLen, _x_velocity ) || readDbl(line, pos[2], fieldLen, _x_acceleration) || readDbl(line, pos[3], fieldLen, _health ) ) { return; } } else if ( iLine == 2 ) { if ( readDbl(line, pos[0], fieldLen, _y_pos ) || readDbl(line, pos[1], fieldLen, _y_velocity ) || readDbl(line, pos[2], fieldLen, _y_acceleration ) || readDbl(line, pos[3], fieldLen, _frequency_number) ) { return; } } else if ( iLine == 3 ) { if ( readDbl(line, pos[0], fieldLen, _z_pos ) || readDbl(line, pos[1], fieldLen, _z_velocity ) || readDbl(line, pos[2], fieldLen, _z_acceleration) || readDbl(line, pos[3], fieldLen, _E ) ) { return; } } } // Initialize status vector // ------------------------ _tt = _TOC; _xv.ReSize(6); _xv(1) = _x_pos * 1.e3; _xv(2) = _y_pos * 1.e3; _xv(3) = _z_pos * 1.e3; _xv(4) = _x_velocity * 1.e3; _xv(5) = _y_velocity * 1.e3; _xv(6) = _z_velocity * 1.e3; _ok = true; } // Constructor ////////////////////////////////////////////////////////////////////////////// t_ephGal::t_ephGal(float /* rnxVersion */, const QStringList& /* lines */) { _ok = false; } // ////////////////////////////////////////////////////////////////////////////// QString t_eph::rinexDateStr(const bncTime& tt, const QString& prn, double version) { QString datStr; unsigned year, month, day, hour, min; double sec; tt.civil_date(year, month, day); tt.civil_time(hour, min, sec); QTextStream out(&datStr); if (version < 3.0) { QString prnHlp = prn.mid(1,2); if (prnHlp[0] == '0') prnHlp[0] = ' '; out << prnHlp << QString(" %1 %2 %3 %4 %5%6") .arg(year % 100, 2, 10, QChar('0')) .arg(month, 2) .arg(day, 2) .arg(hour, 2) .arg(min, 2) .arg(sec, 5, 'f',1); } else { out << prn << QString(" %1 %2 %3 %4 %5 %6") .arg(year, 4) .arg(month, 2, 10, QChar('0')) .arg(day, 2, 10, QChar('0')) .arg(hour, 2, 10, QChar('0')) .arg(min, 2, 10, QChar('0')) .arg(int(sec), 2, 10, QChar('0')); } return datStr; } // RINEX Format String ////////////////////////////////////////////////////////////////////////////// QString t_ephGPS::toString(double version) const { QString rnxStr = rinexDateStr(_TOC, _prn, version); QTextStream out(&rnxStr); out << QString("%1%2%3\n") .arg(_clock_bias, 19, 'e', 12) .arg(_clock_drift, 19, 'e', 12) .arg(_clock_driftrate, 19, 'e', 12); QString fmt = version < 3.0 ? " %1%2%3%4\n" : " %1%2%3%4\n"; out << QString(fmt) .arg(_IODE, 19, 'e', 12) .arg(_Crs, 19, 'e', 12) .arg(_Delta_n, 19, 'e', 12) .arg(_M0, 19, 'e', 12); out << QString(fmt) .arg(_Cuc, 19, 'e', 12) .arg(_e, 19, 'e', 12) .arg(_Cus, 19, 'e', 12) .arg(_sqrt_A, 19, 'e', 12); out << QString(fmt) .arg(_TOEsec, 19, 'e', 12) .arg(_Cic, 19, 'e', 12) .arg(_OMEGA0, 19, 'e', 12) .arg(_Cis, 19, 'e', 12); out << QString(fmt) .arg(_i0, 19, 'e', 12) .arg(_Crc, 19, 'e', 12) .arg(_omega, 19, 'e', 12) .arg(_OMEGADOT, 19, 'e', 12); out << QString(fmt) .arg(_IDOT, 19, 'e', 12) .arg(_L2Codes, 19, 'e', 12) .arg(_TOEweek, 19, 'e', 12) .arg(_L2PFlag, 19, 'e', 12); out << QString(fmt) .arg(_ura, 19, 'e', 12) .arg(_health, 19, 'e', 12) .arg(_TGD, 19, 'e', 12) .arg(_IODC, 19, 'e', 12); out << QString(fmt) .arg(_TOT, 19, 'e', 12) .arg(_fitInterval, 19, 'e', 12) .arg("", 19, QChar(' ')) .arg("", 19, QChar(' ')); return rnxStr; } // RINEX Format String ////////////////////////////////////////////////////////////////////////////// QString t_ephGlo::toString(double version) const { QString rnxStr = rinexDateStr(_TOC-_gps_utc, _prn, version); QTextStream out(&rnxStr); out << QString("%1%2%3\n") .arg(-_tau, 19, 'e', 12) .arg(_gamma, 19, 'e', 12) .arg(_tki, 19, 'e', 12); QString fmt = version < 3.0 ? " %1%2%3%4\n" : " %1%2%3%4\n"; out << QString(fmt) .arg(_x_pos, 19, 'e', 12) .arg(_x_velocity, 19, 'e', 12) .arg(_x_acceleration, 19, 'e', 12) .arg(_health, 19, 'e', 12); out << QString(fmt) .arg(_y_pos, 19, 'e', 12) .arg(_y_velocity, 19, 'e', 12) .arg(_y_acceleration, 19, 'e', 12) .arg(_frequency_number, 19, 'e', 12); out << QString(fmt) .arg(_z_pos, 19, 'e', 12) .arg(_z_velocity, 19, 'e', 12) .arg(_z_acceleration, 19, 'e', 12) .arg(_E, 19, 'e', 12); return rnxStr; } // RINEX Format String ////////////////////////////////////////////////////////////////////////////// QString t_ephGal::toString(double version) const { QString rnxStr = rinexDateStr(_TOC, _prn, version); QTextStream out(&rnxStr); out << QString("%1%2%3\n") .arg(_clock_bias, 19, 'e', 12) .arg(_clock_drift, 19, 'e', 12) .arg(_clock_driftrate, 19, 'e', 12); QString fmt = version < 3.0 ? " %1%2%3%4\n" : " %1%2%3%4\n"; out << QString(fmt) .arg(_IODnav, 19, 'e', 12) .arg(_Crs, 19, 'e', 12) .arg(_Delta_n, 19, 'e', 12) .arg(_M0, 19, 'e', 12); out << QString(fmt) .arg(_Cuc, 19, 'e', 12) .arg(_e, 19, 'e', 12) .arg(_Cus, 19, 'e', 12) .arg(_sqrt_A, 19, 'e', 12); out << QString(fmt) .arg(_TOEsec, 19, 'e', 12) .arg(_Cic, 19, 'e', 12) .arg(_OMEGA0, 19, 'e', 12) .arg(_Cis, 19, 'e', 12); out << QString(fmt) .arg(_i0, 19, 'e', 12) .arg(_Crc, 19, 'e', 12) .arg(_omega, 19, 'e', 12) .arg(_OMEGADOT, 19, 'e', 12); out << QString(fmt) .arg(_IDOT, 19, 'e', 12) .arg("", 19, QChar(' ')) .arg(_TOEweek, 19, 'e', 12) .arg("", 19, QChar(' ')); out << QString(fmt) .arg(_SISA, 19, 'e', 12) .arg(_E5aHS, 19, 'e', 12) .arg(_BGD_1_5A, 19, 'e', 12) .arg(_BGD_1_5B, 19, 'e', 12); out << QString(fmt) .arg(_TOT, 19, 'e', 12) .arg("", 19, QChar(' ')) .arg("", 19, QChar(' ')) .arg("", 19, QChar(' ')); return rnxStr; }