source: ntrip/trunk/BNC/RTCM3/ephemeris.cpp@ 4069

Last change on this file since 4069 was 4029, checked in by mervart, 13 years ago
File size: 34.4 KB
Line 
1#include <math.h>
2#include <sstream>
3#include <iostream>
4#include <iomanip>
5#include <cstring>
6
7#include <newmatio.h>
8
9#include "ephemeris.h"
10#include "bncutils.h"
11#include "timeutils.h"
12#include "bnctime.h"
13#include "bncapp.h"
14
15using namespace std;
16
17// Returns CRC24
18////////////////////////////////////////////////////////////////////////////
19static unsigned long CRC24(long size, const unsigned char *buf) {
20 unsigned long crc = 0;
21 int ii;
22 while (size--) {
23 crc ^= (*buf++) << (16);
24 for(ii = 0; ii < 8; ii++) {
25 crc <<= 1;
26 if (crc & 0x1000000) {
27 crc ^= 0x01864cfb;
28 }
29 }
30 }
31 return crc;
32}
33
34// Set GPS Satellite Position
35////////////////////////////////////////////////////////////////////////////
36void t_ephGPS::set(const gpsephemeris* ee) {
37
38 _prn = QString("G%1").arg(ee->satellite, 2, 10, QChar('0'));
39
40 _TOC.set(ee->GPSweek, ee->TOC);
41 _clock_bias = ee->clock_bias;
42 _clock_drift = ee->clock_drift;
43 _clock_driftrate = ee->clock_driftrate;
44
45 _IODE = ee->IODE;
46 _Crs = ee->Crs;
47 _Delta_n = ee->Delta_n;
48 _M0 = ee->M0;
49
50 _Cuc = ee->Cuc;
51 _e = ee->e;
52 _Cus = ee->Cus;
53 _sqrt_A = ee->sqrt_A;
54
55 _TOEsec = ee->TOE;
56 _Cic = ee->Cic;
57 _OMEGA0 = ee->OMEGA0;
58 _Cis = ee->Cis;
59
60 _i0 = ee->i0;
61 _Crc = ee->Crc;
62 _omega = ee->omega;
63 _OMEGADOT = ee->OMEGADOT;
64
65 _IDOT = ee->IDOT;
66 _L2Codes = 0.0;
67 _TOEweek = ee->GPSweek;
68 _L2PFlag = 0.0;
69
70 if (ee->URAindex <= 6) {
71 _ura = ceil(10.0*pow(2.0, 1.0+((double)ee->URAindex)/2.0))/10.0;
72 }
73 else {
74 _ura = ceil(10.0*pow(2.0, ((double)ee->URAindex)/2.0))/10.0;
75 }
76 _health = ee->SVhealth;
77 _TGD = ee->TGD;
78 _IODC = ee->IODC;
79
80 _TOT = 0.9999e9;
81 _fitInterval = 0.0;
82
83 _ok = true;
84}
85
86// Compute GPS Satellite Position (virtual)
87////////////////////////////////////////////////////////////////////////////
88void t_ephGPS::position(int GPSweek, double GPSweeks,
89 double* xc,
90 double* vv) const {
91
92
93 static const double omegaEarth = 7292115.1467e-11;
94 static const double gmWGS = 398.6005e12;
95
96 memset(xc, 0, 4*sizeof(double));
97 memset(vv, 0, 3*sizeof(double));
98
99 double a0 = _sqrt_A * _sqrt_A;
100 if (a0 == 0) {
101 return;
102 }
103
104 double n0 = sqrt(gmWGS/(a0*a0*a0));
105
106 bncTime tt(GPSweek, GPSweeks);
107 double tk = tt - bncTime(_TOEweek, _TOEsec);
108
109 double n = n0 + _Delta_n;
110 double M = _M0 + n*tk;
111 double E = M;
112 double E_last;
113 do {
114 E_last = E;
115 E = M + _e*sin(E);
116 } while ( fabs(E-E_last)*a0 > 0.001 );
117 double v = 2.0*atan( sqrt( (1.0 + _e)/(1.0 - _e) )*tan( E/2 ) );
118 double u0 = v + _omega;
119 double sin2u0 = sin(2*u0);
120 double cos2u0 = cos(2*u0);
121 double r = a0*(1 - _e*cos(E)) + _Crc*cos2u0 + _Crs*sin2u0;
122 double i = _i0 + _IDOT*tk + _Cic*cos2u0 + _Cis*sin2u0;
123 double u = u0 + _Cuc*cos2u0 + _Cus*sin2u0;
124 double xp = r*cos(u);
125 double yp = r*sin(u);
126 double OM = _OMEGA0 + (_OMEGADOT - omegaEarth)*tk -
127 omegaEarth*_TOEsec;
128
129 double sinom = sin(OM);
130 double cosom = cos(OM);
131 double sini = sin(i);
132 double cosi = cos(i);
133 xc[0] = xp*cosom - yp*cosi*sinom;
134 xc[1] = xp*sinom + yp*cosi*cosom;
135 xc[2] = yp*sini;
136
137 double tc = tt - _TOC;
138 xc[3] = _clock_bias + _clock_drift*tc + _clock_driftrate*tc*tc;
139
140 // Velocity
141 // --------
142 double tanv2 = tan(v/2);
143 double dEdM = 1 / (1 - _e*cos(E));
144 double dotv = sqrt((1.0 + _e)/(1.0 - _e)) / cos(E/2)/cos(E/2) / (1 + tanv2*tanv2)
145 * dEdM * n;
146 double dotu = dotv + (-_Cuc*sin2u0 + _Cus*cos2u0)*2*dotv;
147 double dotom = _OMEGADOT - omegaEarth;
148 double doti = _IDOT + (-_Cic*sin2u0 + _Cis*cos2u0)*2*dotv;
149 double dotr = a0 * _e*sin(E) * dEdM * n
150 + (-_Crc*sin2u0 + _Crs*cos2u0)*2*dotv;
151 double dotx = dotr*cos(u) - r*sin(u)*dotu;
152 double doty = dotr*sin(u) + r*cos(u)*dotu;
153
154 vv[0] = cosom *dotx - cosi*sinom *doty // dX / dr
155 - xp*sinom*dotom - yp*cosi*cosom*dotom // dX / dOMEGA
156 + yp*sini*sinom*doti; // dX / di
157
158 vv[1] = sinom *dotx + cosi*cosom *doty
159 + xp*cosom*dotom - yp*cosi*sinom*dotom
160 - yp*sini*cosom*doti;
161
162 vv[2] = sini *doty + yp*cosi *doti;
163
164 // Relativistic Correction
165 // -----------------------
166 xc[3] -= 2.0 * (xc[0]*vv[0] + xc[1]*vv[1] + xc[2]*vv[2]) / t_CST::c / t_CST::c;
167}
168
169// build up RTCM3 for GPS
170////////////////////////////////////////////////////////////////////////////
171#define GPSTOINT(type, value) static_cast<type>(round(value))
172
173#define GPSADDBITS(a, b) {bitbuffer = (bitbuffer<<(a)) \
174 |(GPSTOINT(long long,b)&((1ULL<<a)-1)); \
175 numbits += (a); \
176 while(numbits >= 8) { \
177 buffer[size++] = bitbuffer>>(numbits-8);numbits -= 8;}}
178
179#define GPSADDBITSFLOAT(a,b,c) {long long i = GPSTOINT(long long,(b)/(c)); \
180 GPSADDBITS(a,i)};
181
182int t_ephGPS::RTCM3(unsigned char *buffer) {
183
184 unsigned char *startbuffer = buffer;
185 buffer= buffer+3;
186 int size = 0;
187 int numbits = 0;
188 unsigned long long bitbuffer = 0;
189 if (_ura <= 2.40){
190 _ura = 0;
191 }
192 else if (_ura <= 3.40){
193 _ura = 1;
194 }
195 else if (_ura <= 6.85){
196 _ura = 2;
197 }
198 else if (_ura <= 9.65){
199 _ura = 3;
200 }
201 else if (_ura <= 13.65){
202 _ura = 4;
203 }
204 else if (_ura <= 24.00){
205 _ura = 5;
206 }
207 else if (_ura <= 48.00){
208 _ura = 6;
209 }
210 else if (_ura <= 96.00){
211 _ura = 7;
212 }
213 else if (_ura <= 192.00){
214 _ura = 8;
215 }
216 else if (_ura <= 384.00){
217 _ura = 9;
218 }
219 else if (_ura <= 768.00){
220 _ura = 10;
221 }
222 else if (_ura <= 1536.00){
223 _ura = 11;
224 }
225 else if (_ura <= 1536.00){
226 _ura = 12;
227 }
228 else if (_ura <= 2072.00){
229 _ura = 13;
230 }
231 else if (_ura <= 6144.00){
232 _ura = 14;
233 }
234 else{
235 _ura = 15;
236 }
237
238 GPSADDBITS(12, 1019)
239 GPSADDBITS(6,_prn.right((_prn.length()-1)).toInt())
240 GPSADDBITS(10, _TOC.gpsw())
241 GPSADDBITS(4, _ura)
242 GPSADDBITS(2,_L2Codes)
243 GPSADDBITSFLOAT(14, _IDOT, M_PI/static_cast<double>(1<<30)
244 /static_cast<double>(1<<13))
245 GPSADDBITS(8, _IODE)
246 GPSADDBITS(16, static_cast<int>(_TOC.gpssec())>>4)
247 GPSADDBITSFLOAT(8, _clock_driftrate, 1.0/static_cast<double>(1<<30)
248 /static_cast<double>(1<<25))
249 GPSADDBITSFLOAT(16, _clock_drift, 1.0/static_cast<double>(1<<30)
250 /static_cast<double>(1<<13))
251 GPSADDBITSFLOAT(22, _clock_bias, 1.0/static_cast<double>(1<<30)
252 /static_cast<double>(1<<1))
253 GPSADDBITS(10, _IODC)
254 GPSADDBITSFLOAT(16, _Crs, 1.0/static_cast<double>(1<<5))
255 GPSADDBITSFLOAT(16, _Delta_n, M_PI/static_cast<double>(1<<30)
256 /static_cast<double>(1<<13))
257 GPSADDBITSFLOAT(32, _M0, M_PI/static_cast<double>(1<<30)/static_cast<double>(1<<1))
258 GPSADDBITSFLOAT(16, _Cuc, 1.0/static_cast<double>(1<<29))
259 GPSADDBITSFLOAT(32, _e, 1.0/static_cast<double>(1<<30)/static_cast<double>(1<<3))
260 GPSADDBITSFLOAT(16, _Cus, 1.0/static_cast<double>(1<<29))
261 GPSADDBITSFLOAT(32, _sqrt_A, 1.0/static_cast<double>(1<<19))
262 GPSADDBITS(16, static_cast<int>(_TOEsec)>>4)
263 GPSADDBITSFLOAT(16, _Cic, 1.0/static_cast<double>(1<<29))
264 GPSADDBITSFLOAT(32, _OMEGA0, M_PI/static_cast<double>(1<<30)
265 /static_cast<double>(1<<1))
266 GPSADDBITSFLOAT(16, _Cis, 1.0/static_cast<double>(1<<29))
267 GPSADDBITSFLOAT(32, _i0, M_PI/static_cast<double>(1<<30)/static_cast<double>(1<<1))
268 GPSADDBITSFLOAT(16, _Crc, 1.0/static_cast<double>(1<<5))
269 GPSADDBITSFLOAT(32, _omega, M_PI/static_cast<double>(1<<30)
270 /static_cast<double>(1<<1))
271 GPSADDBITSFLOAT(24, _OMEGADOT, M_PI/static_cast<double>(1<<30)
272 /static_cast<double>(1<<13))
273 GPSADDBITSFLOAT(8, _TGD, 1.0/static_cast<double>(1<<30)/static_cast<double>(1<<1))
274 GPSADDBITS(6, _health)
275 GPSADDBITS(1, _L2PFlag)
276 GPSADDBITS(1, 0) /* GPS fit interval */
277
278 startbuffer[0]=0xD3;
279 startbuffer[1]=(size >> 8);
280 startbuffer[2]=size;
281 unsigned long i = CRC24(size+3, startbuffer);
282 buffer[size++] = i >> 16;
283 buffer[size++] = i >> 8;
284 buffer[size++] = i;
285 size += 3;
286 return size;
287}
288
289// Derivative of the state vector using a simple force model (static)
290////////////////////////////////////////////////////////////////////////////
291ColumnVector t_ephGlo::glo_deriv(double /* tt */, const ColumnVector& xv,
292 double* acc) {
293
294 // State vector components
295 // -----------------------
296 ColumnVector rr = xv.rows(1,3);
297 ColumnVector vv = xv.rows(4,6);
298
299 // Acceleration
300 // ------------
301 static const double GM = 398.60044e12;
302 static const double AE = 6378136.0;
303 static const double OMEGA = 7292115.e-11;
304 static const double C20 = -1082.6257e-6;
305
306 double rho = rr.norm_Frobenius();
307 double t1 = -GM/(rho*rho*rho);
308 double t2 = 3.0/2.0 * C20 * (GM*AE*AE) / (rho*rho*rho*rho*rho);
309 double t3 = OMEGA * OMEGA;
310 double t4 = 2.0 * OMEGA;
311 double z2 = rr(3) * rr(3);
312
313 // Vector of derivatives
314 // ---------------------
315 ColumnVector va(6);
316 va(1) = vv(1);
317 va(2) = vv(2);
318 va(3) = vv(3);
319 va(4) = (t1 + t2*(1.0-5.0*z2/(rho*rho)) + t3) * rr(1) + t4*vv(2) + acc[0];
320 va(5) = (t1 + t2*(1.0-5.0*z2/(rho*rho)) + t3) * rr(2) - t4*vv(1) + acc[1];
321 va(6) = (t1 + t2*(3.0-5.0*z2/(rho*rho)) ) * rr(3) + acc[2];
322
323 return va;
324}
325
326// Compute Glonass Satellite Position (virtual)
327////////////////////////////////////////////////////////////////////////////
328void t_ephGlo::position(int GPSweek, double GPSweeks,
329 double* xc, double* vv) const {
330
331 static const double nominalStep = 10.0;
332
333 memset(xc, 0, 4*sizeof(double));
334 memset(vv, 0, 3*sizeof(double));
335
336 double dtPos = bncTime(GPSweek, GPSweeks) - _tt;
337
338 int nSteps = int(fabs(dtPos) / nominalStep) + 1;
339 double step = dtPos / nSteps;
340
341 double acc[3];
342 acc[0] = _x_acceleration * 1.e3;
343 acc[1] = _y_acceleration * 1.e3;
344 acc[2] = _z_acceleration * 1.e3;
345 for (int ii = 1; ii <= nSteps; ii++) {
346 _xv = rungeKutta4(_tt.gpssec(), _xv, step, acc, glo_deriv);
347 _tt = _tt + step;
348 }
349
350 // Position and Velocity
351 // ---------------------
352 xc[0] = _xv(1);
353 xc[1] = _xv(2);
354 xc[2] = _xv(3);
355
356 vv[0] = _xv(4);
357 vv[1] = _xv(5);
358 vv[2] = _xv(6);
359
360 // Clock Correction
361 // ----------------
362 double dtClk = bncTime(GPSweek, GPSweeks) - _TOC;
363 xc[3] = -_tau + _gamma * dtClk;
364}
365
366// IOD of Glonass Ephemeris (virtual)
367////////////////////////////////////////////////////////////////////////////
368int t_ephGlo::IOD() const {
369 bncTime tMoscow = _TOC - _gps_utc + 3 * 3600.0;
370 return int(tMoscow.daysec() / 900);
371}
372
373// Set Glonass Ephemeris
374////////////////////////////////////////////////////////////////////////////
375void t_ephGlo::set(const glonassephemeris* ee) {
376
377 _prn = QString("R%1").arg(ee->almanac_number, 2, 10, QChar('0'));
378
379 int ww = ee->GPSWeek;
380 int tow = ee->GPSTOW;
381 updatetime(&ww, &tow, ee->tb*1000, 0); // Moscow -> GPS
382
383 // Check the day once more
384 // -----------------------
385 {
386 const double secPerDay = 24 * 3600.0;
387 const double secPerWeek = 7 * secPerDay;
388 int ww_old = ww;
389 int tow_old = tow;
390 int currentWeek;
391 double currentSec;
392 currentGPSWeeks(currentWeek, currentSec);
393 bncTime currentTime(currentWeek, currentSec);
394 bncTime hTime(ww, (double) tow);
395
396 bool changed = false;
397 if (hTime - currentTime > secPerDay/2.0) {
398 changed = true;
399 tow -= secPerDay;
400 if (tow < 0) {
401 tow += secPerWeek;
402 ww -= 1;
403 }
404 }
405 else if (hTime - currentTime < -secPerDay/2.0) {
406 changed = true;
407 tow += secPerDay;
408 if (tow > secPerWeek) {
409 tow -= secPerWeek;
410 ww += 1;
411 }
412 }
413
414 if (changed && ((bncApp*) qApp)->mode() == bncApp::batchPostProcessing) {
415 bncTime newHTime(ww, (double) tow);
416 cout << "GLONASS " << ee->almanac_number << " Time Changed at "
417 << currentTime.datestr() << " " << currentTime.timestr()
418 << endl
419 << "old: " << hTime.datestr() << " " << hTime.timestr()
420 << endl
421 << "new: " << newHTime.datestr() << " " << newHTime.timestr()
422 << endl
423 << "eph: " << ee->GPSWeek << " " << ee->GPSTOW << " " << ee->tb
424 << endl
425 << "ww, tow (old): " << ww_old << " " << tow_old
426 << endl
427 << "ww, tow (new): " << ww << " " << tow
428 << endl << endl;
429 }
430 }
431
432 bncTime hlpTime(ww, (double) tow);
433 unsigned year, month, day;
434 hlpTime.civil_date(year, month, day);
435 _gps_utc = gnumleap(year, month, day);
436
437 _TOC.set(ww, tow);
438 _E = ee->E;
439 _tau = ee->tau;
440 _gamma = ee->gamma;
441 _x_pos = ee->x_pos;
442 _x_velocity = ee->x_velocity;
443 _x_acceleration = ee->x_acceleration;
444 _y_pos = ee->y_pos;
445 _y_velocity = ee->y_velocity;
446 _y_acceleration = ee->y_acceleration;
447 _z_pos = ee->z_pos;
448 _z_velocity = ee->z_velocity;
449 _z_acceleration = ee->z_acceleration;
450 _health = 0;
451 _frequency_number = ee->frequency_number;
452 _tki = ee->tk-3*60*60; if (_tki < 0) _tki += 86400;
453
454 // Initialize status vector
455 // ------------------------
456 _tt = _TOC;
457
458 _xv(1) = _x_pos * 1.e3;
459 _xv(2) = _y_pos * 1.e3;
460 _xv(3) = _z_pos * 1.e3;
461 _xv(4) = _x_velocity * 1.e3;
462 _xv(5) = _y_velocity * 1.e3;
463 _xv(6) = _z_velocity * 1.e3;
464
465 _ok = true;
466}
467
468// build up RTCM3 for GLONASS
469////////////////////////////////////////////////////////////////////////////
470#define GLONASSTOINT(type, value) static_cast<type>(round(value))
471
472#define GLONASSADDBITS(a, b) {bitbuffer = (bitbuffer<<(a)) \
473 |(GLONASSTOINT(long long,b)&((1ULL<<(a))-1)); \
474 numbits += (a); \
475 while(numbits >= 8) { \
476 buffer[size++] = bitbuffer>>(numbits-8);numbits -= 8;}}
477#define GLONASSADDBITSFLOATM(a,b,c) {int s; long long i; \
478 if(b < 0.0) \
479 { \
480 s = 1; \
481 i = GLONASSTOINT(long long,(-b)/(c)); \
482 if(!i) s = 0; \
483 } \
484 else \
485 { \
486 s = 0; \
487 i = GLONASSTOINT(long long,(b)/(c)); \
488 } \
489 GLONASSADDBITS(1,s) \
490 GLONASSADDBITS(a-1,i)}
491
492int t_ephGlo::RTCM3(unsigned char *buffer)
493{
494
495 int size = 0;
496 int numbits = 0;
497 long long bitbuffer = 0;
498 unsigned char *startbuffer = buffer;
499 buffer= buffer+3;
500
501 GLONASSADDBITS(12, 1020)
502 GLONASSADDBITS(6, _prn.right((_prn.length()-1)).toInt())
503 GLONASSADDBITS(5, 7+_frequency_number)
504 GLONASSADDBITS(1, 0)
505 GLONASSADDBITS(1, 0)
506 GLONASSADDBITS(2, 0)
507 _tki=_tki+3*60*60;
508 GLONASSADDBITS(5, static_cast<int>(_tki)/(60*60))
509 GLONASSADDBITS(6, (static_cast<int>(_tki)/60)%60)
510 GLONASSADDBITS(1, (static_cast<int>(_tki)/30)%30)
511 GLONASSADDBITS(1, _health)
512 GLONASSADDBITS(1, 0)
513 unsigned long long timeofday = (static_cast<int>(_tt.gpssec()+3*60*60-_gps_utc)%86400);
514 GLONASSADDBITS(7, timeofday/60/15)
515 GLONASSADDBITSFLOATM(24, _x_velocity*1000, 1000.0/static_cast<double>(1<<20))
516 GLONASSADDBITSFLOATM(27, _x_pos*1000, 1000.0/static_cast<double>(1<<11))
517 GLONASSADDBITSFLOATM(5, _x_acceleration*1000, 1000.0/static_cast<double>(1<<30))
518 GLONASSADDBITSFLOATM(24, _y_velocity*1000, 1000.0/static_cast<double>(1<<20))
519 GLONASSADDBITSFLOATM(27, _y_pos*1000, 1000.0/static_cast<double>(1<<11))
520 GLONASSADDBITSFLOATM(5, _y_acceleration*1000, 1000.0/static_cast<double>(1<<30))
521 GLONASSADDBITSFLOATM(24, _z_velocity*1000, 1000.0/static_cast<double>(1<<20))
522 GLONASSADDBITSFLOATM(27,_z_pos*1000, 1000.0/static_cast<double>(1<<11))
523 GLONASSADDBITSFLOATM(5, _z_acceleration*1000, 1000.0/static_cast<double>(1<<30))
524 GLONASSADDBITS(1, 0)
525 GLONASSADDBITSFLOATM(11, _gamma, 1.0/static_cast<double>(1<<30)
526 /static_cast<double>(1<<10))
527 GLONASSADDBITS(2, 0) /* GLONASS-M P */
528 GLONASSADDBITS(1, 0) /* GLONASS-M ln(3) */
529 GLONASSADDBITSFLOATM(22, _tau, 1.0/static_cast<double>(1<<30))
530 GLONASSADDBITS(5, 0) /* GLONASS-M delta tau */
531 GLONASSADDBITS(5, _E)
532 GLONASSADDBITS(1, 0) /* GLONASS-M P4 */
533 GLONASSADDBITS(4, 0) /* GLONASS-M FT */
534 GLONASSADDBITS(11, 0) /* GLONASS-M NT */
535 GLONASSADDBITS(2, 0) /* GLONASS-M active? */
536 GLONASSADDBITS(1, 0) /* GLONASS additional data */
537 GLONASSADDBITS(11, 0) /* GLONASS NA */
538 GLONASSADDBITS(32, 0) /* GLONASS tau C */
539 GLONASSADDBITS(5, 0) /* GLONASS-M N4 */
540 GLONASSADDBITS(22, 0) /* GLONASS-M tau GPS */
541 GLONASSADDBITS(1, 0) /* GLONASS-M ln(5) */
542 GLONASSADDBITS(7, 0) /* Reserved */
543
544 startbuffer[0]=0xD3;
545 startbuffer[1]=(size >> 8);
546 startbuffer[2]=size;
547 unsigned long i = CRC24(size+3, startbuffer);
548 buffer[size++] = i >> 16;
549 buffer[size++] = i >> 8;
550 buffer[size++] = i;
551 size += 3;
552 return size;
553}
554
555// Set Galileo Satellite Position
556////////////////////////////////////////////////////////////////////////////
557void t_ephGal::set(const galileoephemeris* ee) {
558
559 _prn = QString("E%1").arg(ee->satellite, 2, 10, QChar('0'));
560
561 _TOC.set(ee->Week, ee->TOC);
562 _clock_bias = ee->clock_bias;
563 _clock_drift = ee->clock_drift;
564 _clock_driftrate = ee->clock_driftrate;
565
566 _IODnav = ee->IODnav;
567 _Crs = ee->Crs;
568 _Delta_n = ee->Delta_n;
569 _M0 = ee->M0;
570
571 _Cuc = ee->Cuc;
572 _e = ee->e;
573 _Cus = ee->Cus;
574 _sqrt_A = ee->sqrt_A;
575
576 _TOEsec = ee->TOE;
577 _Cic = ee->Cic;
578 _OMEGA0 = ee->OMEGA0;
579 _Cis = ee->Cis;
580
581 _i0 = ee->i0;
582 _Crc = ee->Crc;
583 _omega = ee->omega;
584 _OMEGADOT = ee->OMEGADOT;
585
586 _IDOT = ee->IDOT;
587 _TOEweek = ee->Week;
588
589 _SISA = ee->SISA;
590 _E5aHS = ee->E5aHS;
591 _BGD_1_5A = ee->BGD_1_5A;
592 _BGD_1_5B = ee->BGD_1_5B;
593
594 _TOT = 0.9999e9;
595
596 _ok = true;
597}
598
599// Compute Galileo Satellite Position (virtual)
600////////////////////////////////////////////////////////////////////////////
601void t_ephGal::position(int GPSweek, double GPSweeks,
602 double* xc,
603 double* vv) const {
604
605 static const double omegaEarth = 7292115.1467e-11;
606 static const double gmWGS = 398.6005e12;
607
608 memset(xc, 0, 4*sizeof(double));
609 memset(vv, 0, 3*sizeof(double));
610
611 double a0 = _sqrt_A * _sqrt_A;
612 if (a0 == 0) {
613 return;
614 }
615
616 double n0 = sqrt(gmWGS/(a0*a0*a0));
617
618 bncTime tt(GPSweek, GPSweeks);
619 double tk = tt - bncTime(_TOC.gpsw(), _TOEsec);
620
621 double n = n0 + _Delta_n;
622 double M = _M0 + n*tk;
623 double E = M;
624 double E_last;
625 do {
626 E_last = E;
627 E = M + _e*sin(E);
628 } while ( fabs(E-E_last)*a0 > 0.001 );
629 double v = 2.0*atan( sqrt( (1.0 + _e)/(1.0 - _e) )*tan( E/2 ) );
630 double u0 = v + _omega;
631 double sin2u0 = sin(2*u0);
632 double cos2u0 = cos(2*u0);
633 double r = a0*(1 - _e*cos(E)) + _Crc*cos2u0 + _Crs*sin2u0;
634 double i = _i0 + _IDOT*tk + _Cic*cos2u0 + _Cis*sin2u0;
635 double u = u0 + _Cuc*cos2u0 + _Cus*sin2u0;
636 double xp = r*cos(u);
637 double yp = r*sin(u);
638 double OM = _OMEGA0 + (_OMEGADOT - omegaEarth)*tk -
639 omegaEarth*_TOEsec;
640
641 double sinom = sin(OM);
642 double cosom = cos(OM);
643 double sini = sin(i);
644 double cosi = cos(i);
645 xc[0] = xp*cosom - yp*cosi*sinom;
646 xc[1] = xp*sinom + yp*cosi*cosom;
647 xc[2] = yp*sini;
648
649 double tc = tt - _TOC;
650 xc[3] = _clock_bias + _clock_drift*tc + _clock_driftrate*tc*tc;
651
652 // Velocity
653 // --------
654 double tanv2 = tan(v/2);
655 double dEdM = 1 / (1 - _e*cos(E));
656 double dotv = sqrt((1.0 + _e)/(1.0 - _e)) / cos(E/2)/cos(E/2) / (1 + tanv2*tanv2)
657 * dEdM * n;
658 double dotu = dotv + (-_Cuc*sin2u0 + _Cus*cos2u0)*2*dotv;
659 double dotom = _OMEGADOT - omegaEarth;
660 double doti = _IDOT + (-_Cic*sin2u0 + _Cis*cos2u0)*2*dotv;
661 double dotr = a0 * _e*sin(E) * dEdM * n
662 + (-_Crc*sin2u0 + _Crs*cos2u0)*2*dotv;
663 double dotx = dotr*cos(u) - r*sin(u)*dotu;
664 double doty = dotr*sin(u) + r*cos(u)*dotu;
665
666 vv[0] = cosom *dotx - cosi*sinom *doty // dX / dr
667 - xp*sinom*dotom - yp*cosi*cosom*dotom // dX / dOMEGA
668 + yp*sini*sinom*doti; // dX / di
669
670 vv[1] = sinom *dotx + cosi*cosom *doty
671 + xp*cosom*dotom - yp*cosi*sinom*dotom
672 - yp*sini*cosom*doti;
673
674 vv[2] = sini *doty + yp*cosi *doti;
675
676 // Relativistic Correction
677 // -----------------------
678 // xc(4) -= 4.442807633e-10 * _e * sqrt(a0) *sin(E);
679 xc[3] -= 2.0 * (xc[0]*vv[0] + xc[1]*vv[1] + xc[2]*vv[2]) / t_CST::c / t_CST::c;
680}
681
682// build up RTCM3 for Galileo
683////////////////////////////////////////////////////////////////////////////
684#define GALILEOTOINT(type, value) static_cast<type>(round(value))
685
686#define GALILEOADDBITS(a, b) {bitbuffer = (bitbuffer<<(a)) \
687 |(GALILEOTOINT(long long,b)&((1LL<<a)-1)); \
688 numbits += (a); \
689 while(numbits >= 8) { \
690 buffer[size++] = bitbuffer>>(numbits-8);numbits -= 8;}}
691#define GALILEOADDBITSFLOAT(a,b,c) {long long i = GALILEOTOINT(long long,(b)/(c)); \
692 GALILEOADDBITS(a,i)};
693
694int t_ephGal::RTCM3(unsigned char *buffer) {
695 int size = 0;
696 int numbits = 0;
697 long long bitbuffer = 0;
698 unsigned char *startbuffer = buffer;
699 buffer= buffer+3;
700
701 GALILEOADDBITS(12, /*inav ? 1046 :*/ 1045)
702 GALILEOADDBITS(6, _prn.right((_prn.length()-1)).toInt())
703 GALILEOADDBITS(12, _TOC.gpsw())
704 GALILEOADDBITS(10, _IODnav)
705 GALILEOADDBITS(8, _SISA)
706 GALILEOADDBITSFLOAT(14, _IDOT, M_PI/static_cast<double>(1<<30)
707 /static_cast<double>(1<<13))
708 GALILEOADDBITS(14, _TOC.gpssec()/60)
709 GALILEOADDBITSFLOAT(6, _clock_driftrate, 1.0/static_cast<double>(1<<30)
710 /static_cast<double>(1<<29))
711 GALILEOADDBITSFLOAT(21, _clock_drift, 1.0/static_cast<double>(1<<30)
712 /static_cast<double>(1<<16))
713 GALILEOADDBITSFLOAT(31, _clock_bias, 1.0/static_cast<double>(1<<30)
714 /static_cast<double>(1<<4))
715 GALILEOADDBITSFLOAT(16, _Crs, 1.0/static_cast<double>(1<<5))
716 GALILEOADDBITSFLOAT(16, _Delta_n, M_PI/static_cast<double>(1<<30)
717 /static_cast<double>(1<<13))
718 GALILEOADDBITSFLOAT(32, _M0, M_PI/static_cast<double>(1<<30)/static_cast<double>(1<<1))
719 GALILEOADDBITSFLOAT(16, _Cuc, 1.0/static_cast<double>(1<<29))
720 GALILEOADDBITSFLOAT(32, _e, 1.0/static_cast<double>(1<<30)/static_cast<double>(1<<3))
721 GALILEOADDBITSFLOAT(16, _Cus, 1.0/static_cast<double>(1<<29))
722 GALILEOADDBITSFLOAT(32, _sqrt_A, 1.0/static_cast<double>(1<<19))
723 GALILEOADDBITS(14, _TOEsec/60)
724 GALILEOADDBITSFLOAT(16, _Cic, 1.0/static_cast<double>(1<<29))
725 GALILEOADDBITSFLOAT(32, _OMEGA0, M_PI/static_cast<double>(1<<30)
726 /static_cast<double>(1<<1))
727 GALILEOADDBITSFLOAT(16, _Cis, 1.0/static_cast<double>(1<<29))
728 GALILEOADDBITSFLOAT(32, _i0, M_PI/static_cast<double>(1<<30)/static_cast<double>(1<<1))
729 GALILEOADDBITSFLOAT(16, _Crc, 1.0/static_cast<double>(1<<5))
730 GALILEOADDBITSFLOAT(32, _omega, M_PI/static_cast<double>(1<<30)
731 /static_cast<double>(1<<1))
732 GALILEOADDBITSFLOAT(24, _OMEGADOT, M_PI/static_cast<double>(1<<30)
733 /static_cast<double>(1<<13))
734 GALILEOADDBITSFLOAT(10, _BGD_1_5A, 1.0/static_cast<double>(1<<30)
735 /static_cast<double>(1<<2))
736 /*if(inav)
737 {
738 GALILEOADDBITSFLOAT(10, _BGD_1_5B, 1.0/static_cast<double>(1<<30)
739 /static_cast<double>(1<<2))
740 GALILEOADDBITS(2, _E5bHS)
741 GALILEOADDBITS(1, flags & MNFGALEPHF_E5BDINVALID)
742 }
743 else*/
744 {
745 GALILEOADDBITS(2, _E5aHS)
746 GALILEOADDBITS(1, /*flags & MNFGALEPHF_E5ADINVALID*/0)
747 }
748 _TOEsec = 0.9999E9;
749 GALILEOADDBITS(20, _TOEsec)
750
751 GALILEOADDBITS(/*inav ? 1 :*/ 3, 0) /* fill up */
752
753 startbuffer[0]=0xD3;
754 startbuffer[1]=(size >> 8);
755 startbuffer[2]=size;
756 unsigned long i = CRC24(size+3, startbuffer);
757 buffer[size++] = i >> 16;
758 buffer[size++] = i >> 8;
759 buffer[size++] = i;
760 size += 3;
761 return size;
762}
763
764// Constructor
765//////////////////////////////////////////////////////////////////////////////
766t_ephGPS::t_ephGPS(float rnxVersion, const QStringList& lines) {
767
768 const int nLines = 8;
769
770 _ok = false;
771
772 if (lines.size() != nLines) {
773 return;
774 }
775
776 // RINEX Format
777 // ------------
778 int fieldLen = 19;
779
780 int pos[4];
781 pos[0] = (rnxVersion <= 2.12) ? 3 : 4;
782 pos[1] = pos[0] + fieldLen;
783 pos[2] = pos[1] + fieldLen;
784 pos[3] = pos[2] + fieldLen;
785
786 // Read eight lines
787 // ----------------
788 for (int iLine = 0; iLine < nLines; iLine++) {
789 QString line = lines[iLine];
790
791 if ( iLine == 0 ) {
792 QTextStream in(line.left(pos[1]).toAscii());
793
794 int year, month, day, hour, min;
795 double sec;
796
797 in >> _prn >> year >> month >> day >> hour >> min >> sec;
798
799 if (_prn.at(0) != 'G') {
800 _prn = QString("G%1").arg(_prn.toInt(), 2, 10, QLatin1Char('0'));
801 }
802
803 if (year < 80) {
804 year += 2000;
805 }
806 else if (year < 100) {
807 year += 1900;
808 }
809
810 _TOC.set(year, month, day, hour, min, sec);
811
812 if ( readDbl(line, pos[1], fieldLen, _clock_bias ) ||
813 readDbl(line, pos[2], fieldLen, _clock_drift ) ||
814 readDbl(line, pos[3], fieldLen, _clock_driftrate) ) {
815 return;
816 }
817 }
818
819 else if ( iLine == 1 ) {
820 if ( readDbl(line, pos[0], fieldLen, _IODE ) ||
821 readDbl(line, pos[1], fieldLen, _Crs ) ||
822 readDbl(line, pos[2], fieldLen, _Delta_n) ||
823 readDbl(line, pos[3], fieldLen, _M0 ) ) {
824 return;
825 }
826 }
827
828 else if ( iLine == 2 ) {
829 if ( readDbl(line, pos[0], fieldLen, _Cuc ) ||
830 readDbl(line, pos[1], fieldLen, _e ) ||
831 readDbl(line, pos[2], fieldLen, _Cus ) ||
832 readDbl(line, pos[3], fieldLen, _sqrt_A) ) {
833 return;
834 }
835 }
836
837 else if ( iLine == 3 ) {
838 if ( readDbl(line, pos[0], fieldLen, _TOEsec) ||
839 readDbl(line, pos[1], fieldLen, _Cic ) ||
840 readDbl(line, pos[2], fieldLen, _OMEGA0) ||
841 readDbl(line, pos[3], fieldLen, _Cis ) ) {
842 return;
843 }
844 }
845
846 else if ( iLine == 4 ) {
847 if ( readDbl(line, pos[0], fieldLen, _i0 ) ||
848 readDbl(line, pos[1], fieldLen, _Crc ) ||
849 readDbl(line, pos[2], fieldLen, _omega ) ||
850 readDbl(line, pos[3], fieldLen, _OMEGADOT) ) {
851 return;
852 }
853 }
854
855 else if ( iLine == 5 ) {
856 if ( readDbl(line, pos[0], fieldLen, _IDOT ) ||
857 readDbl(line, pos[1], fieldLen, _L2Codes) ||
858 readDbl(line, pos[2], fieldLen, _TOEweek ) ||
859 readDbl(line, pos[3], fieldLen, _L2PFlag) ) {
860 return;
861 }
862 }
863
864 else if ( iLine == 6 ) {
865 if ( readDbl(line, pos[0], fieldLen, _ura ) ||
866 readDbl(line, pos[1], fieldLen, _health) ||
867 readDbl(line, pos[2], fieldLen, _TGD ) ||
868 readDbl(line, pos[3], fieldLen, _IODC ) ) {
869 return;
870 }
871 }
872
873 else if ( iLine == 7 ) {
874 if ( readDbl(line, pos[0], fieldLen, _TOT) ||
875 readDbl(line, pos[1], fieldLen, _fitInterval) ) {
876 return;
877 }
878 }
879 }
880
881 _ok = true;
882}
883
884// Constructor
885//////////////////////////////////////////////////////////////////////////////
886t_ephGlo::t_ephGlo(float rnxVersion, const QStringList& lines) {
887
888 const int nLines = 4;
889
890 _ok = false;
891
892 if (lines.size() != nLines) {
893 return;
894 }
895
896 // RINEX Format
897 // ------------
898 int fieldLen = 19;
899
900 int pos[4];
901 pos[0] = (rnxVersion <= 2.12) ? 3 : 4;
902 pos[1] = pos[0] + fieldLen;
903 pos[2] = pos[1] + fieldLen;
904 pos[3] = pos[2] + fieldLen;
905
906 // Read four lines
907 // ---------------
908 for (int iLine = 0; iLine < nLines; iLine++) {
909 QString line = lines[iLine];
910
911 if ( iLine == 0 ) {
912 QTextStream in(line.left(pos[1]).toAscii());
913
914 int year, month, day, hour, min;
915 double sec;
916
917 in >> _prn >> year >> month >> day >> hour >> min >> sec;
918
919 if (_prn.at(0) != 'R') {
920 _prn = QString("R%1").arg(_prn.toInt(), 2, 10, QLatin1Char('0'));
921 }
922
923 if (year < 80) {
924 year += 2000;
925 }
926 else if (year < 100) {
927 year += 1900;
928 }
929
930 _gps_utc = gnumleap(year, month, day);
931
932 _TOC.set(year, month, day, hour, min, sec);
933 _TOC = _TOC + _gps_utc;
934
935 if ( readDbl(line, pos[1], fieldLen, _tau ) ||
936 readDbl(line, pos[2], fieldLen, _gamma) ||
937 readDbl(line, pos[3], fieldLen, _tki ) ) {
938 return;
939 }
940
941 _tau = -_tau;
942 }
943
944 else if ( iLine == 1 ) {
945 if ( readDbl(line, pos[0], fieldLen, _x_pos ) ||
946 readDbl(line, pos[1], fieldLen, _x_velocity ) ||
947 readDbl(line, pos[2], fieldLen, _x_acceleration) ||
948 readDbl(line, pos[3], fieldLen, _health ) ) {
949 return;
950 }
951 }
952
953 else if ( iLine == 2 ) {
954 if ( readDbl(line, pos[0], fieldLen, _y_pos ) ||
955 readDbl(line, pos[1], fieldLen, _y_velocity ) ||
956 readDbl(line, pos[2], fieldLen, _y_acceleration ) ||
957 readDbl(line, pos[3], fieldLen, _frequency_number) ) {
958 return;
959 }
960 }
961
962 else if ( iLine == 3 ) {
963 if ( readDbl(line, pos[0], fieldLen, _z_pos ) ||
964 readDbl(line, pos[1], fieldLen, _z_velocity ) ||
965 readDbl(line, pos[2], fieldLen, _z_acceleration) ||
966 readDbl(line, pos[3], fieldLen, _E ) ) {
967 return;
968 }
969 }
970 }
971
972 // Initialize status vector
973 // ------------------------
974 _tt = _TOC;
975 _xv.ReSize(6);
976 _xv(1) = _x_pos * 1.e3;
977 _xv(2) = _y_pos * 1.e3;
978 _xv(3) = _z_pos * 1.e3;
979 _xv(4) = _x_velocity * 1.e3;
980 _xv(5) = _y_velocity * 1.e3;
981 _xv(6) = _z_velocity * 1.e3;
982
983 _ok = true;
984}
985
986// Constructor
987//////////////////////////////////////////////////////////////////////////////
988t_ephGal::t_ephGal(float /* rnxVersion */, const QStringList& /* lines */) {
989
990 _ok = false;
991}
992
993//
994//////////////////////////////////////////////////////////////////////////////
995QString t_eph::rinexDateStr(const bncTime& tt, const QString& prn,
996 double version) {
997
998 QString datStr;
999
1000 unsigned year, month, day, hour, min;
1001 double sec;
1002 tt.civil_date(year, month, day);
1003 tt.civil_time(hour, min, sec);
1004
1005 QTextStream out(&datStr);
1006
1007 if (version < 3.0) {
1008 QString prnHlp = prn.mid(1,2); if (prnHlp[0] == '0') prnHlp[0] = ' ';
1009 out << prnHlp << QString(" %1 %2 %3 %4 %5%6")
1010 .arg(year % 100, 2, 10, QChar('0'))
1011 .arg(month, 2)
1012 .arg(day, 2)
1013 .arg(hour, 2)
1014 .arg(min, 2)
1015 .arg(sec, 5, 'f',1);
1016 }
1017 else {
1018 out << prn << QString(" %1 %2 %3 %4 %5 %6")
1019 .arg(year, 4)
1020 .arg(month, 2, 10, QChar('0'))
1021 .arg(day, 2, 10, QChar('0'))
1022 .arg(hour, 2, 10, QChar('0'))
1023 .arg(min, 2, 10, QChar('0'))
1024 .arg(int(sec), 2, 10, QChar('0'));
1025 }
1026
1027 return datStr;
1028}
1029
1030// RINEX Format String
1031//////////////////////////////////////////////////////////////////////////////
1032QString t_ephGPS::toString(double version) const {
1033
1034 QString rnxStr = rinexDateStr(_TOC, _prn, version);
1035
1036 QTextStream out(&rnxStr);
1037
1038 out << QString("%1%2%3\n")
1039 .arg(_clock_bias, 19, 'e', 12)
1040 .arg(_clock_drift, 19, 'e', 12)
1041 .arg(_clock_driftrate, 19, 'e', 12);
1042
1043 QString fmt = version < 3.0 ? " %1%2%3%4\n" : " %1%2%3%4\n";
1044
1045 out << QString(fmt)
1046 .arg(_IODE, 19, 'e', 12)
1047 .arg(_Crs, 19, 'e', 12)
1048 .arg(_Delta_n, 19, 'e', 12)
1049 .arg(_M0, 19, 'e', 12);
1050
1051 out << QString(fmt)
1052 .arg(_Cuc, 19, 'e', 12)
1053 .arg(_e, 19, 'e', 12)
1054 .arg(_Cus, 19, 'e', 12)
1055 .arg(_sqrt_A, 19, 'e', 12);
1056
1057 out << QString(fmt)
1058 .arg(_TOEsec, 19, 'e', 12)
1059 .arg(_Cic, 19, 'e', 12)
1060 .arg(_OMEGA0, 19, 'e', 12)
1061 .arg(_Cis, 19, 'e', 12);
1062
1063 out << QString(fmt)
1064 .arg(_i0, 19, 'e', 12)
1065 .arg(_Crc, 19, 'e', 12)
1066 .arg(_omega, 19, 'e', 12)
1067 .arg(_OMEGADOT, 19, 'e', 12);
1068
1069 out << QString(fmt)
1070 .arg(_IDOT, 19, 'e', 12)
1071 .arg(_L2Codes, 19, 'e', 12)
1072 .arg(_TOEweek, 19, 'e', 12)
1073 .arg(_L2PFlag, 19, 'e', 12);
1074
1075 out << QString(fmt)
1076 .arg(_ura, 19, 'e', 12)
1077 .arg(_health, 19, 'e', 12)
1078 .arg(_TGD, 19, 'e', 12)
1079 .arg(_IODC, 19, 'e', 12);
1080
1081 out << QString(fmt)
1082 .arg(_TOT, 19, 'e', 12)
1083 .arg(_fitInterval, 19, 'e', 12)
1084 .arg("", 19, QChar(' '))
1085 .arg("", 19, QChar(' '));
1086
1087 return rnxStr;
1088}
1089
1090// RINEX Format String
1091//////////////////////////////////////////////////////////////////////////////
1092QString t_ephGlo::toString(double version) const {
1093
1094 QString rnxStr = rinexDateStr(_TOC-_gps_utc, _prn, version);
1095
1096 QTextStream out(&rnxStr);
1097
1098 out << QString("%1%2%3\n")
1099 .arg(-_tau, 19, 'e', 12)
1100 .arg(_gamma, 19, 'e', 12)
1101 .arg(_tki, 19, 'e', 12);
1102
1103 QString fmt = version < 3.0 ? " %1%2%3%4\n" : " %1%2%3%4\n";
1104
1105 out << QString(fmt)
1106 .arg(_x_pos, 19, 'e', 12)
1107 .arg(_x_velocity, 19, 'e', 12)
1108 .arg(_x_acceleration, 19, 'e', 12)
1109 .arg(_health, 19, 'e', 12);
1110
1111 out << QString(fmt)
1112 .arg(_y_pos, 19, 'e', 12)
1113 .arg(_y_velocity, 19, 'e', 12)
1114 .arg(_y_acceleration, 19, 'e', 12)
1115 .arg(_frequency_number, 19, 'e', 12);
1116
1117 out << QString(fmt)
1118 .arg(_z_pos, 19, 'e', 12)
1119 .arg(_z_velocity, 19, 'e', 12)
1120 .arg(_z_acceleration, 19, 'e', 12)
1121 .arg(_E, 19, 'e', 12);
1122
1123 return rnxStr;
1124}
1125
1126// RINEX Format String
1127//////////////////////////////////////////////////////////////////////////////
1128QString t_ephGal::toString(double version) const {
1129
1130 QString rnxStr = rinexDateStr(_TOC, _prn, version);
1131
1132 QTextStream out(&rnxStr);
1133
1134 out << QString("%1%2%3\n")
1135 .arg(_clock_bias, 19, 'e', 12)
1136 .arg(_clock_drift, 19, 'e', 12)
1137 .arg(_clock_driftrate, 19, 'e', 12);
1138
1139 QString fmt = version < 3.0 ? " %1%2%3%4\n" : " %1%2%3%4\n";
1140
1141 out << QString(fmt)
1142 .arg(_IODnav, 19, 'e', 12)
1143 .arg(_Crs, 19, 'e', 12)
1144 .arg(_Delta_n, 19, 'e', 12)
1145 .arg(_M0, 19, 'e', 12);
1146
1147 out << QString(fmt)
1148 .arg(_Cuc, 19, 'e', 12)
1149 .arg(_e, 19, 'e', 12)
1150 .arg(_Cus, 19, 'e', 12)
1151 .arg(_sqrt_A, 19, 'e', 12);
1152
1153 out << QString(fmt)
1154 .arg(_TOEsec, 19, 'e', 12)
1155 .arg(_Cic, 19, 'e', 12)
1156 .arg(_OMEGA0, 19, 'e', 12)
1157 .arg(_Cis, 19, 'e', 12);
1158
1159 out << QString(fmt)
1160 .arg(_i0, 19, 'e', 12)
1161 .arg(_Crc, 19, 'e', 12)
1162 .arg(_omega, 19, 'e', 12)
1163 .arg(_OMEGADOT, 19, 'e', 12);
1164
1165 out << QString(fmt)
1166 .arg(_IDOT, 19, 'e', 12)
1167 .arg("", 19, QChar(' '))
1168 .arg(_TOEweek, 19, 'e', 12)
1169 .arg("", 19, QChar(' '));
1170
1171 out << QString(fmt)
1172 .arg(_SISA, 19, 'e', 12)
1173 .arg(_E5aHS, 19, 'e', 12)
1174 .arg(_BGD_1_5A, 19, 'e', 12)
1175 .arg(_BGD_1_5B, 19, 'e', 12);
1176
1177 out << QString(fmt)
1178 .arg(_TOT, 19, 'e', 12)
1179 .arg("", 19, QChar(' '))
1180 .arg("", 19, QChar(' '))
1181 .arg("", 19, QChar(' '));
1182
1183 return rnxStr;
1184}
1185
Note: See TracBrowser for help on using the repository browser.