// Part of BNC, a utility for retrieving decoding and // converting GNSS data streams from NTRIP broadcasters. // // Copyright (C) 2007 // German Federal Agency for Cartography and Geodesy (BKG) // http://www.bkg.bund.de // Czech Technical University Prague, Department of Geodesy // http://www.fsv.cvut.cz // // Email: euref-ip@bkg.bund.de // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation, version 2. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. /* ------------------------------------------------------------------------- * BKG NTRIP Client * ------------------------------------------------------------------------- * * Class: RTCM3Decoder * * Purpose: RTCM3 Decoder * * Author: L. Mervart * * Created: 24-Aug-2006 * * Changes: * * -----------------------------------------------------------------------*/ #include #include #include #include "RTCM3Decoder.h" #include "RTCM3coDecoder.h" #include "bncconst.h" #include "bncapp.h" #include "bncutils.h" /* Weber, for latencies */ using namespace std; #ifndef isinf # define isinf(x) 0 #endif // Error Handling //////////////////////////////////////////////////////////////////////////// void RTCM3Error(const char*, ...) { } // Constructor //////////////////////////////////////////////////////////////////////////// RTCM3Decoder::RTCM3Decoder(const QString& staID) : GPSDecoder() { const int LEAPSECONDS = 14; /* only needed for approx. time */ QSettings settings; _checkMountPoint = settings.value("messTypes").toString(); _corrLate = settings.value("corrLate").toInt(); _staID = staID; // Ensure, that the Decoder uses the "old" convention for the data structure for Rinex2. Perlt _Parser.rinex3 = 0; time_t tim; tim = time(0) - ((10*365+2+5)*24*60*60 + LEAPSECONDS); memset(&_Parser, 0, sizeof(_Parser)); _Parser.GPSWeek = tim/(7*24*60*60); _Parser.GPSTOW = tim%(7*24*60*60); connect(this, SIGNAL(newGPSEph(gpsephemeris*)), (bncApp*) qApp, SLOT(slotNewGPSEph(gpsephemeris*))); connect(this, SIGNAL(newGlonassEph(glonassephemeris*)), (bncApp*) qApp, SLOT(slotNewGlonassEph(glonassephemeris*))); // Sub-Decoder for Clock and Orbit Corrections // ------------------------------------------- _coDecoder = new RTCM3coDecoder(staID); // Mode can be either observations or corrections // ---------------------------------------------- _mode = unknown; } // Destructor //////////////////////////////////////////////////////////////////////////// RTCM3Decoder::~RTCM3Decoder() { delete _coDecoder; } // //////////////////////////////////////////////////////////////////////////// t_irc RTCM3Decoder::Decode(char* buffer, int bufLen) { bool decoded = false; // Try to decode Clock and Orbit Corrections // ----------------------------------------- if (_mode == unknown || _mode == corrections) { if ( _coDecoder->Decode(buffer, bufLen) == success ) { decoded = true; // Latency, Weber // ------- if ( _corrLate == 2 ) { if (0<_coDecoder->_epochList.size()) { for (int ii=0;ii<_coDecoder->_epochList.size();ii++) { int week; double sec; double secGPS = _coDecoder->_epochList[ii]; leapsecGPSWeeks(week, sec); double dt = fabs(sec - secGPS); const double secPerWeek = 7.0 * 24.0 * 3600.0; if (dt > 0.5 * secPerWeek) { if (sec > secGPS) { sec -= secPerWeek; } else { sec += secPerWeek; } } QString late; late = QString("%1 ").arg(int((sec - secGPS)*100.)/100.); if (late != "") { emit(newMessage(QString(_staID + ": Latency " + late + "sec").toAscii() ) ); } } } } _coDecoder->_epochList.clear(); if (_mode == unknown) { _mode = corrections; // emit(newMessage( (_staID + " : mode set to corrections").toAscii() )); } } } // Remaining part decodes the Observations // --------------------------------------- if (_mode == unknown || _mode == observations || _checkMountPoint == _staID || _checkMountPoint == "ALL") { for (int ii = 0; ii < bufLen; ii++) { _Parser.Message[_Parser.MessageSize++] = buffer[ii]; if (_Parser.MessageSize >= _Parser.NeedBytes) { // RTCM message types // ------------------ for (int kk = 0; kk < _Parser.typeSize; kk++) { _typeList.push_back(_Parser.typeList[kk]); } _Parser.typeSize = 0; while(int rr = RTCM3Parser(&_Parser)) { // GNSS Observations // ----------------- if (rr == 1 || rr == 2) { decoded = true; if (!_Parser.init) { HandleHeader(&_Parser); _Parser.init = 1; } if (rr == 2) { // std::cerr << "No valid RINEX! All values are modulo 299792.458!\n"; emit(newMessage( (_staID + ": No valid RINEX! All values are modulo 299792.458!").toAscii() )); } for (int ii = 0; ii < _Parser.Data.numsats; ii++) { p_obs obs = new t_obs(); _obsList.push_back(obs); if (_Parser.Data.satellites[ii] <= PRN_GPS_END) { obs->_o.satSys = 'G'; obs->_o.satNum = _Parser.Data.satellites[ii]; } else if (_Parser.Data.satellites[ii] <= PRN_GLONASS_END) { obs->_o.satSys = 'R'; obs->_o.satNum = _Parser.Data.satellites[ii] - PRN_GLONASS_START + 1; } else { obs->_o.satSys = 'S'; obs->_o.satNum = _Parser.Data.satellites[ii] - PRN_WAAS_START + 20; } obs->_o.GPSWeek = _Parser.Data.week; obs->_o.GPSWeeks = _Parser.Data.timeofweek / 1000.0; for (int jj = 0; jj < _Parser.numdatatypesGPS; jj++) { int v = 0; // sepearated declaration and initalization of df and pos. Perlt int df; int pos; df = _Parser.dataflag[jj]; pos = _Parser.datapos[jj]; if ( (_Parser.Data.dataflags[ii] & df) && !isnan(_Parser.Data.measdata[ii][pos]) && !isinf(_Parser.Data.measdata[ii][pos])) { v = 1; } else { df = _Parser.dataflagGPS[jj]; pos = _Parser.dataposGPS[jj]; if ( (_Parser.Data.dataflags[ii] & df) && !isnan(_Parser.Data.measdata[ii][pos]) && !isinf(_Parser.Data.measdata[ii][pos])) { v = 1; } } if (!v) { continue; } else { int isat = (_Parser.Data.satellites[ii] < 120 ? _Parser.Data.satellites[ii] : _Parser.Data.satellites[ii] - 80); // variables df and pos are used consequently. Perlt if (df & GNSSDF_C1DATA) { obs->_o.C1 = _Parser.Data.measdata[ii][pos]; } else if (df & GNSSDF_C2DATA) { obs->_o.C2 = _Parser.Data.measdata[ii][pos]; } else if (df & GNSSDF_P1DATA) { obs->_o.P1 = _Parser.Data.measdata[ii][pos]; } else if (df & GNSSDF_P2DATA) { obs->_o.P2 = _Parser.Data.measdata[ii][pos]; } else if (df & (GNSSDF_L1CDATA|GNSSDF_L1PDATA)) { obs->_o.L1 = _Parser.Data.measdata[ii][pos]; obs->_o.SNR1 = _Parser.Data.snrL1[ii]; obs->_o.lock_timei_L1 = _Parser.lastlockl1[isat]; } else if (df & (GNSSDF_L2CDATA|GNSSDF_L2PDATA)) { obs->_o.L2 = _Parser.Data.measdata[ii][pos]; obs->_o.SNR2 = _Parser.Data.snrL2[ii]; obs->_o.lock_timei_L2 = _Parser.lastlockl2[isat]; } else if (df & (GNSSDF_S1CDATA|GNSSDF_S1PDATA)) { obs->_o.S1 = _Parser.Data.measdata[ii][pos]; } else if (df & (GNSSDF_S2CDATA|GNSSDF_S2PDATA)) { obs->_o.S2 = _Parser.Data.measdata[ii][pos]; } } } } } // GPS Ephemeris // ------------- else if (rr == 1019) { decoded = true; gpsephemeris* ep = new gpsephemeris(_Parser.ephemerisGPS); emit newGPSEph(ep); } // GLONASS Ephemeris // ----------------- else if (rr == 1020) { decoded = true; glonassephemeris* ep = new glonassephemeris(_Parser.ephemerisGLONASS); emit newGlonassEph(ep); } } } } if (_mode == unknown && decoded) { _mode = observations; // emit(newMessage( (_staID + " : mode set to observations").toAscii() )); } } if (decoded) { return success; } else { return failure; } }