// Part of BNC, a utility for retrieving decoding and // converting GNSS data streams from NTRIP broadcasters. // // Copyright (C) 2007 // German Federal Agency for Cartography and Geodesy (BKG) // http://www.bkg.bund.de // Czech Technical University Prague, Department of Geodesy // http://www.fsv.cvut.cz // // Email: euref-ip@bkg.bund.de // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation, version 2. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. /* ------------------------------------------------------------------------- * BKG NTRIP Client * ------------------------------------------------------------------------- * * Class: bncParam, bncModel * * Purpose: Model for PPP * * Author: L. Mervart * * Created: 01-Dec-2009 * * Changes: * * -----------------------------------------------------------------------*/ #include <iomanip> #include <cmath> #include <newmatio.h> #include <sstream> #include "bncmodel.h" #include "bncapp.h" #include "bncpppclient.h" #include "bancroft.h" #include "bncutils.h" #include "bncsettings.h" #include "bnctides.h" #include "bncantex.h" using namespace std; const unsigned MINOBS = 5; const double MINELE = 10.0 * M_PI / 180.0; const double MAXRES_CODE = 10.0; const double MAXRES_PHASE_GPS = 0.04; const double MAXRES_PHASE_GLONASS = 0.08; const double GLONASS_WEIGHT_FACTOR = 5.0; // Constructor //////////////////////////////////////////////////////////////////////////// bncParam::bncParam(bncParam::parType typeIn, int indexIn, const QString& prnIn) { type = typeIn; index = indexIn; prn = prnIn; index_old = 0; xx = 0.0; numEpo = 0; } // Destructor //////////////////////////////////////////////////////////////////////////// bncParam::~bncParam() { } // Partial //////////////////////////////////////////////////////////////////////////// double bncParam::partial(t_satData* satData, bool phase) { Tracer tracer("bncParam::partial"); // Coordinates // ----------- if (type == CRD_X) { return (xx - satData->xx(1)) / satData->rho; } else if (type == CRD_Y) { return (xx - satData->xx(2)) / satData->rho; } else if (type == CRD_Z) { return (xx - satData->xx(3)) / satData->rho; } // Receiver Clocks // --------------- else if (type == RECCLK) { return 1.0; } // Troposphere // ----------- else if (type == TROPO) { return 1.0 / sin(satData->eleSat); } // Galileo Offset // -------------- else if (type == GALILEO_OFFSET) { if (satData->prn[0] == 'E') { return 1.0; } else { return 0.0; } } // Ambiguities // ----------- else if (type == AMB_L3) { if (phase && satData->prn == prn) { return 1.0; } else { return 0.0; } } // Default return // -------------- return 0.0; } // Constructor //////////////////////////////////////////////////////////////////////////// bncModel::bncModel(QByteArray staID) { _staID = staID; connect(this, SIGNAL(newMessage(QByteArray,bool)), ((bncApp*)qApp), SLOT(slotMessage(const QByteArray,bool))); bncSettings settings; // Observation Sigmas // ------------------ _sigP3 = 5.0; if (!settings.value("pppSigmaCode").toString().isEmpty()) { _sigP3 = settings.value("pppSigmaCode").toDouble(); } _sigL3 = 0.02; if (!settings.value("pppSigmaPhase").toString().isEmpty()) { _sigL3 = settings.value("pppSigmaPhase").toDouble(); } // Parameter Sigmas // ---------------- _sigCrd0 = 100.0; if (!settings.value("pppSigCrd0").toString().isEmpty()) { _sigCrd0 = settings.value("pppSigCrd0").toDouble(); } _sigCrdP = 100.0; if (!settings.value("pppSigCrdP").toString().isEmpty()) { _sigCrdP = settings.value("pppSigCrdP").toDouble(); } _sigTrp0 = 0.1; if (!settings.value("pppSigTrp0").toString().isEmpty()) { _sigTrp0 = settings.value("pppSigTrp0").toDouble(); } _sigTrpP = 1e-6; if (!settings.value("pppSigTrpP").toString().isEmpty()) { _sigTrpP = settings.value("pppSigTrpP").toDouble(); } _sigClk0 = 1000.0; _sigAmb0 = 1000.0; _sigGalileoOffset0 = 1000.0; _sigGalileoOffsetP = 0.0; // Quick-Start Mode // ---------------- _quickStart = 0; if (settings.value("pppRefCrdX").toString() != "" && settings.value("pppRefCrdY").toString() != "" && settings.value("pppRefCrdZ").toString() != "" && !settings.value("pppQuickStart").toString().isEmpty()) { _quickStart = settings.value("pppQuickStart").toDouble(); } // Several options // --------------- _usePhase = false; if ( Qt::CheckState(settings.value("pppUsePhase").toInt()) == Qt::Checked) { _usePhase = true; } _estTropo = false; if ( Qt::CheckState(settings.value("pppEstTropo").toInt()) == Qt::Checked) { _estTropo = true; } _useGalileo = false; if ( Qt::CheckState(settings.value("pppGalileo").toInt()) == Qt::Checked) { _useGalileo = true; } // NMEA Output // ----------- QString nmeaFileName = settings.value("nmeaFile").toString(); if (nmeaFileName.isEmpty()) { _nmeaFile = 0; _nmeaStream = 0; } else { expandEnvVar(nmeaFileName); _nmeaFile = new QFile(nmeaFileName); if ( Qt::CheckState(settings.value("rnxAppend").toInt()) == Qt::Checked) { _nmeaFile->open(QIODevice::WriteOnly | QIODevice::Append); } else { _nmeaFile->open(QIODevice::WriteOnly); } _nmeaStream = new QTextStream(); _nmeaStream->setDevice(_nmeaFile); } // Antenna Name, ANTEX File // ------------------------ _antex = 0; QString antexFileName = settings.value("pppAntex").toString(); if (!antexFileName.isEmpty()) { _antex = new bncAntex(); if (_antex->readFile(antexFileName) != success) { emit newMessage("wrong ANTEX file", true); delete _antex; _antex = 0; } else { _antennaName = settings.value("pppAntenna").toString(); } } // Antenna Eccentricities // ---------------------- _dN = settings.value("pppRefdN").toDouble(); _dE = settings.value("pppRefdE").toDouble(); _dU = settings.value("pppRefdU").toDouble(); // Bancroft Coordinates // -------------------- _xcBanc.ReSize(4); _xcBanc = 0.0; _ellBanc.ReSize(3); _ellBanc = 0.0; // Save copy of data (used in outlier detection) // --------------------------------------------- _epoData_sav = new t_epoData(); } // Destructor //////////////////////////////////////////////////////////////////////////// bncModel::~bncModel() { delete _nmeaStream; delete _nmeaFile; for (int ii = 0; ii < _posAverage.size(); ++ii) { delete _posAverage[ii]; } delete _antex; for (int iPar = 1; iPar <= _params.size(); iPar++) { delete _params[iPar-1]; } for (int iPar = 1; iPar <= _params_sav.size(); iPar++) { delete _params_sav[iPar-1]; } delete _epoData_sav; } // Reset Parameters and Variance-Covariance Matrix //////////////////////////////////////////////////////////////////////////// void bncModel::reset() { Tracer tracer("bncModel::reset"); for (int iPar = 1; iPar <= _params.size(); iPar++) { delete _params[iPar-1]; } _params.clear(); int nextPar = 0; _params.push_back(new bncParam(bncParam::CRD_X, ++nextPar, "")); _params.push_back(new bncParam(bncParam::CRD_Y, ++nextPar, "")); _params.push_back(new bncParam(bncParam::CRD_Z, ++nextPar, "")); _params.push_back(new bncParam(bncParam::RECCLK, ++nextPar, "")); if (_estTropo) { _params.push_back(new bncParam(bncParam::TROPO, ++nextPar, "")); } if (_useGalileo) { _params.push_back(new bncParam(bncParam::GALILEO_OFFSET, ++nextPar, "")); } _QQ.ReSize(_params.size()); _QQ = 0.0; for (int iPar = 1; iPar <= _params.size(); iPar++) { bncParam* pp = _params[iPar-1]; pp->xx = 0.0; if (pp->isCrd()) { _QQ(iPar,iPar) = _sigCrd0 * _sigCrd0; } else if (pp->type == bncParam::RECCLK) { _QQ(iPar,iPar) = _sigClk0 * _sigClk0; } else if (pp->type == bncParam::TROPO) { _QQ(iPar,iPar) = _sigTrp0 * _sigTrp0; } else if (pp->type == bncParam::GALILEO_OFFSET) { _QQ(iPar,iPar) = _sigGalileoOffset0 * _sigGalileoOffset0; } } } // Bancroft Solution //////////////////////////////////////////////////////////////////////////// t_irc bncModel::cmpBancroft(t_epoData* epoData) { Tracer tracer("bncModel::cmpBancroft"); if (epoData->sizeSys('G') < MINOBS) { _log += "bncModel::cmpBancroft: not enough data\n"; return failure; } Matrix BB(epoData->sizeSys('G'), 4); QMapIterator<QString, t_satData*> it(epoData->satData); int iObsBanc = 0; while (it.hasNext()) { it.next(); t_satData* satData = it.value(); if (satData->system() == 'G') { ++iObsBanc; QString prn = it.key(); BB(iObsBanc, 1) = satData->xx(1); BB(iObsBanc, 2) = satData->xx(2); BB(iObsBanc, 3) = satData->xx(3); BB(iObsBanc, 4) = satData->P3 + satData->clk; } } bancroft(BB, _xcBanc); // Ellipsoidal Coordinates // ------------------------ xyz2ell(_xcBanc.data(), _ellBanc.data()); // Compute Satellite Elevations // ---------------------------- QMutableMapIterator<QString, t_satData*> im(epoData->satData); while (im.hasNext()) { im.next(); t_satData* satData = im.value(); cmpEle(satData); if (satData->eleSat < MINELE) { delete satData; im.remove(); } } return success; } // Computed Value //////////////////////////////////////////////////////////////////////////// double bncModel::cmpValue(t_satData* satData, bool phase) { Tracer tracer("bncModel::cmpValue"); ColumnVector xRec(3); xRec(1) = x(); xRec(2) = y(); xRec(3) = z(); double rho0 = (satData->xx - xRec).norm_Frobenius(); double dPhi = t_CST::omega * rho0 / t_CST::c; xRec(1) = x() * cos(dPhi) - y() * sin(dPhi); xRec(2) = y() * cos(dPhi) + x() * sin(dPhi); xRec(3) = z(); tides(_time, xRec); satData->rho = (satData->xx - xRec).norm_Frobenius(); double tropDelay = delay_saast(satData->eleSat) + trp() / sin(satData->eleSat); double wind = 0.0; if (phase) { wind = windUp(satData->prn, satData->xx, xRec) * satData->lambda3; } double offset = 0.0; if (satData->prn[0] == 'E') { offset = Galileo_offset(); } double phaseCenter = 0.0; if (_antex) { bool found; phaseCenter = _antex->pco(_antennaName, satData->eleSat, found); if (!found) { emit newMessage("ANTEX: antenna >" + _antennaName.toAscii() + "< not found", true); } } double antennaOffset = 0.0; if (_dN != 0.0 || _dE != 0.0 || _dU != 0.0) { double cosa = cos(satData->azSat); double sina = sin(satData->azSat); double cose = cos(satData->eleSat); double sine = sin(satData->eleSat); antennaOffset = -_dN * cosa*cose - _dE * sina*cose - _dU * sine; } return satData->rho + phaseCenter + antennaOffset + clk() + offset - satData->clk + tropDelay + wind; } // Tropospheric Model (Saastamoinen) //////////////////////////////////////////////////////////////////////////// double bncModel::delay_saast(double Ele) { Tracer tracer("bncModel::delay_saast"); double xyz[3]; xyz[0] = x(); xyz[1] = y(); xyz[2] = z(); double ell[3]; xyz2ell(xyz, ell); double height = ell[2]; double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225); double TT = 18.0 - height * 0.0065 + 273.15; double hh = 50.0 * exp(-6.396e-4 * height); double ee = hh / 100.0 * exp(-37.2465 + 0.213166*TT - 0.000256908*TT*TT); double h_km = height / 1000.0; if (h_km < 0.0) h_km = 0.0; if (h_km > 5.0) h_km = 5.0; int ii = int(h_km + 1); double href = ii - 1; double bCor[6]; bCor[0] = 1.156; bCor[1] = 1.006; bCor[2] = 0.874; bCor[3] = 0.757; bCor[4] = 0.654; bCor[5] = 0.563; double BB = bCor[ii-1] + (bCor[ii]-bCor[ii-1]) * (h_km - href); double zen = M_PI/2.0 - Ele; return (0.002277/cos(zen)) * (pp + ((1255.0/TT)+0.05)*ee - BB*(tan(zen)*tan(zen))); } // Prediction Step of the Filter //////////////////////////////////////////////////////////////////////////// void bncModel::predict(int iPhase, t_epoData* epoData) { Tracer tracer("bncModel::predict"); if (iPhase == 0) { bncSettings settings; _maxSolGap = settings.value("pppMaxSolGap").toDouble(); bool firstCrd = false; if (!_lastTimeOK.valid() || (_maxSolGap > 0 && _time - _lastTimeOK > _maxSolGap)) { firstCrd = true; _startTime = epoData->tt; reset(); } // Use different white noise for Quick-Start mode // ---------------------------------------------- double sigCrdP_used = _sigCrdP; if ( _quickStart > 0.0 && _quickStart > (epoData->tt - _startTime) ) { sigCrdP_used = 0.0; } // Predict Parameter values, add white noise // ----------------------------------------- for (int iPar = 1; iPar <= _params.size(); iPar++) { bncParam* pp = _params[iPar-1]; // Coordinates // ----------- if (pp->type == bncParam::CRD_X) { if (firstCrd) { if (settings.value("pppRefCrdX").toString() != "" && settings.value("pppRefCrdY").toString() != "" && settings.value("pppRefCrdZ").toString() != "") { pp->xx = settings.value("pppRefCrdX").toDouble(); } else { pp->xx = _xcBanc(1); } } _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used; } else if (pp->type == bncParam::CRD_Y) { if (firstCrd) { if (settings.value("pppRefCrdX").toString() != "" && settings.value("pppRefCrdY").toString() != "" && settings.value("pppRefCrdZ").toString() != "") { pp->xx = settings.value("pppRefCrdY").toDouble(); } else { pp->xx = _xcBanc(2); } } _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used; } else if (pp->type == bncParam::CRD_Z) { if (firstCrd) { if (settings.value("pppRefCrdX").toString() != "" && settings.value("pppRefCrdY").toString() != "" && settings.value("pppRefCrdZ").toString() != "") { pp->xx = settings.value("pppRefCrdZ").toDouble(); } else { pp->xx = _xcBanc(3); } } _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used; } // Receiver Clocks // --------------- else if (pp->type == bncParam::RECCLK) { pp->xx = _xcBanc(4); for (int jj = 1; jj <= _params.size(); jj++) { _QQ(iPar, jj) = 0.0; } _QQ(iPar,iPar) = _sigClk0 * _sigClk0; } // Tropospheric Delay // ------------------ else if (pp->type == bncParam::TROPO) { _QQ(iPar,iPar) += _sigTrpP * _sigTrpP; } // Galileo Offset // -------------- else if (pp->type == bncParam::GALILEO_OFFSET) { _QQ(iPar,iPar) += _sigGalileoOffsetP * _sigGalileoOffsetP; } } } // Add New Ambiguities if necessary // -------------------------------- if (_usePhase) { // Make a copy of QQ and xx, set parameter indices // ----------------------------------------------- SymmetricMatrix QQ_old = _QQ; for (int iPar = 1; iPar <= _params.size(); iPar++) { _params[iPar-1]->index_old = _params[iPar-1]->index; _params[iPar-1]->index = 0; } // Remove Ambiguity Parameters without observations // ------------------------------------------------ int iPar = 0; QMutableVectorIterator<bncParam*> im(_params); while (im.hasNext()) { bncParam* par = im.next(); bool removed = false; if (par->type == bncParam::AMB_L3) { if (epoData->satData.find(par->prn) == epoData->satData.end()) { removed = true; delete par; im.remove(); } } if (! removed) { ++iPar; par->index = iPar; } } // Add new ambiguity parameters // ---------------------------- QMapIterator<QString, t_satData*> it(epoData->satData); while (it.hasNext()) { it.next(); t_satData* satData = it.value(); addAmb(satData); } int nPar = _params.size(); _QQ.ReSize(nPar); _QQ = 0.0; for (int i1 = 1; i1 <= nPar; i1++) { bncParam* p1 = _params[i1-1]; if (p1->index_old != 0) { _QQ(p1->index, p1->index) = QQ_old(p1->index_old, p1->index_old); for (int i2 = 1; i2 <= nPar; i2++) { bncParam* p2 = _params[i2-1]; if (p2->index_old != 0) { _QQ(p1->index, p2->index) = QQ_old(p1->index_old, p2->index_old); } } } } for (int ii = 1; ii <= nPar; ii++) { bncParam* par = _params[ii-1]; if (par->index_old == 0) { _QQ(par->index, par->index) = _sigAmb0 * _sigAmb0; } par->index_old = par->index; } } } // Update Step of the Filter (currently just a single-epoch solution) //////////////////////////////////////////////////////////////////////////// t_irc bncModel::update(t_epoData* epoData) { Tracer tracer("bncModel::update"); bncSettings settings; _log.clear(); _time = epoData->tt; // current epoch time if (settings.value("pppSPP").toString() == "PPP") { _log += "Precise Point Positioning of Epoch " + QByteArray(_time.timestr(1).c_str()) + "\n---------------------------------------------------------------\n"; } else { _log += "Single Point Positioning of Epoch " + QByteArray(_time.timestr(1).c_str()) + "\n--------------------------------------------------------------\n"; } // Outlier Detection Loop // ---------------------- if (update_p(epoData) != success) { emit newMessage(_log, false); return failure; } // Remember the Epoch-specific Results for the computation of means // ---------------------------------------------------------------- pppPos* newPos = new pppPos; newPos->time = epoData->tt; // Set Solution Vector // ------------------- ostringstream strB; strB.setf(ios::fixed); QVectorIterator<bncParam*> itPar(_params); while (itPar.hasNext()) { bncParam* par = itPar.next(); if (par->type == bncParam::RECCLK) { strB << "\n clk = " << setw(10) << setprecision(3) << par->xx << " +- " << setw(6) << setprecision(3) << sqrt(_QQ(par->index,par->index)); } else if (par->type == bncParam::AMB_L3) { ++par->numEpo; strB << "\n amb " << par->prn.toAscii().data() << " = " << setw(10) << setprecision(3) << par->xx << " +- " << setw(6) << setprecision(3) << sqrt(_QQ(par->index,par->index)) << " nEpo = " << par->numEpo; } else if (par->type == bncParam::TROPO) { double aprTrp = delay_saast(M_PI/2.0); strB << "\n trp = " << par->prn.toAscii().data() << setw(7) << setprecision(3) << aprTrp << " " << setw(6) << setprecision(3) << showpos << par->xx << noshowpos << " +- " << setw(6) << setprecision(3) << sqrt(_QQ(par->index,par->index)); newPos->xnt[6] = aprTrp + par->xx; } else if (par->type == bncParam::GALILEO_OFFSET) { strB << "\n offset = " << setw(10) << setprecision(3) << par->xx << " +- " << setw(6) << setprecision(3) << sqrt(_QQ(par->index,par->index)); } } strB << '\n'; _log += strB.str().c_str(); emit newMessage(_log, false); // Final Message (both log file and screen) // ---------------------------------------- ostringstream strC; strC.setf(ios::fixed); strC << _staID.data() << " PPP " << epoData->tt.timestr(1) << " " << epoData->sizeAll() << " " << setw(14) << setprecision(3) << x() << " +- " << setw(6) << setprecision(3) << sqrt(_QQ(1,1)) << " " << setw(14) << setprecision(3) << y() << " +- " << setw(6) << setprecision(3) << sqrt(_QQ(2,2)) << " " << setw(14) << setprecision(3) << z() << " +- " << setw(6) << setprecision(3) << sqrt(_QQ(3,3)); // NEU Output // ---------- double xyzRef[3]; if (settings.value("pppRefCrdX").toString() != "" && settings.value("pppRefCrdY").toString() != "" && settings.value("pppRefCrdZ").toString() != "") { xyzRef[0] = settings.value("pppRefCrdX").toDouble(); xyzRef[1] = settings.value("pppRefCrdY").toDouble(); xyzRef[2] = settings.value("pppRefCrdZ").toDouble(); newPos->xnt[0] = x() - xyzRef[0]; newPos->xnt[1] = y() - xyzRef[1]; newPos->xnt[2] = z() - xyzRef[2]; double ellRef[3]; xyz2ell(xyzRef, ellRef); xyz2neu(ellRef, newPos->xnt, &newPos->xnt[3]); strC << " NEU " << setw(8) << setprecision(3) << newPos->xnt[3] << " " << setw(8) << setprecision(3) << newPos->xnt[4] << " " << setw(8) << setprecision(3) << newPos->xnt[5] << endl; } emit newMessage(QByteArray(strC.str().c_str()), true); if (settings.value("pppAverage").toString() == "") { delete newPos; } else { _posAverage.push_back(newPos); // Time Span for Average Computation // --------------------------------- double tRangeAverage = settings.value("pppAverage").toDouble() * 60.; if (tRangeAverage < 0) { tRangeAverage = 0; } if (tRangeAverage > 86400) { tRangeAverage = 86400; } // Compute the Mean // ---------------- ColumnVector mean(7); mean = 0.0; QMutableVectorIterator<pppPos*> it(_posAverage); while (it.hasNext()) { pppPos* pp = it.next(); if ( (epoData->tt - pp->time) >= tRangeAverage ) { delete pp; it.remove(); } else { for (int ii = 0; ii < 7; ++ii) { mean[ii] += pp->xnt[ii]; } } } int nn = _posAverage.size(); if (nn > 0) { mean /= nn; // Compute the Deviation // --------------------- ColumnVector std(7); std = 0.0; QVectorIterator<pppPos*> it2(_posAverage); while (it2.hasNext()) { pppPos* pp = it2.next(); for (int ii = 0; ii < 7; ++ii) { std[ii] += (pp->xnt[ii] - mean[ii]) * (pp->xnt[ii] - mean[ii]); } } for (int ii = 0; ii < 7; ++ii) { std[ii] = sqrt(std[ii] / nn); } if (settings.value("pppRefCrdX").toString() != "" && settings.value("pppRefCrdY").toString() != "" && settings.value("pppRefCrdZ").toString() != "") { ostringstream strD; strD.setf(ios::fixed); strD << _staID.data() << " AVE-XYZ " << epoData->tt.timestr(1) << " " << setw(13) << setprecision(3) << mean[0] + xyzRef[0] << " +- " << setw(6) << setprecision(3) << std[0] << " " << setw(14) << setprecision(3) << mean[1] + xyzRef[1] << " +- " << setw(6) << setprecision(3) << std[1] << " " << setw(14) << setprecision(3) << mean[2] + xyzRef[2] << " +- " << setw(6) << setprecision(3) << std[2]; emit newMessage(QByteArray(strD.str().c_str()), true); ostringstream strE; strE.setf(ios::fixed); strE << _staID.data() << " AVE-NEU " << epoData->tt.timestr(1) << " " << setw(13) << setprecision(3) << mean[3] << " +- " << setw(6) << setprecision(3) << std[3] << " " << setw(14) << setprecision(3) << mean[4] << " +- " << setw(6) << setprecision(3) << std[4] << " " << setw(14) << setprecision(3) << mean[5] << " +- " << setw(6) << setprecision(3) << std[5]; emit newMessage(QByteArray(strE.str().c_str()), true); if ( Qt::CheckState(settings.value("pppEstTropo").toInt()) == Qt::Checked) { ostringstream strF; strF.setf(ios::fixed); strF << _staID.data() << " AVE-TRP " << epoData->tt.timestr(1) << " " << setw(13) << setprecision(3) << mean[6] << " +- " << setw(6) << setprecision(3) << std[6] << endl; emit newMessage(QByteArray(strF.str().c_str()), true); } } } } // NMEA Output // ----------- double xyz[3]; xyz[0] = x(); xyz[1] = y(); xyz[2] = z(); double ell[3]; xyz2ell(xyz, ell); double phiDeg = ell[0] * 180 / M_PI; double lamDeg = ell[1] * 180 / M_PI; char phiCh = 'N'; if (phiDeg < 0) { phiDeg = -phiDeg; phiCh = 'S'; } char lamCh = 'E'; if (lamDeg < 0) { lamDeg = -lamDeg; lamCh = 'W'; } string datestr = epoData->tt.datestr(0); // yyyymmdd ostringstream strRMC; strRMC.setf(ios::fixed); strRMC << "GPRMC," << epoData->tt.timestr(0,0) << ",A," << setw(2) << setfill('0') << int(phiDeg) << setw(6) << setprecision(3) << setfill('0') << fmod(60*phiDeg,60) << ',' << phiCh << ',' << setw(3) << setfill('0') << int(lamDeg) << setw(6) << setprecision(3) << setfill('0') << fmod(60*lamDeg,60) << ',' << lamCh << ",,," << datestr[6] << datestr[7] << datestr[4] << datestr[5] << datestr[2] << datestr[3] << ",,"; writeNMEAstr(QString(strRMC.str().c_str())); double dop = 2.0; // TODO ostringstream strGGA; strGGA.setf(ios::fixed); strGGA << "GPGGA," << epoData->tt.timestr(0,0) << ',' << setw(2) << setfill('0') << int(phiDeg) << setw(10) << setprecision(7) << setfill('0') << fmod(60*phiDeg,60) << ',' << phiCh << ',' << setw(3) << setfill('0') << int(lamDeg) << setw(10) << setprecision(7) << setfill('0') << fmod(60*lamDeg,60) << ',' << lamCh << ",1," << setw(2) << setfill('0') << epoData->sizeAll() << ',' << setw(3) << setprecision(1) << dop << ',' << setprecision(3) << ell[2] << ",M,0.0,M,,"; writeNMEAstr(QString(strGGA.str().c_str())); _lastTimeOK = _time; // remember time of last successful update return success; } // Outlier Detection //////////////////////////////////////////////////////////////////////////// QString bncModel::outlierDetection(int iPhase, const ColumnVector& vv, QMap<QString, t_satData*>& satData) { Tracer tracer("bncModel::outlierDetection"); QString prnGPS; QString prnGlo; double maxResGPS = 0.0; double maxResGlo = 0.0; findMaxRes(vv, satData, prnGPS, prnGlo, maxResGPS, maxResGlo); if (iPhase == 1) { if (maxResGlo > MAXRES_PHASE_GLONASS) { _log += "Outlier Phase " + prnGlo + " " + QByteArray::number(maxResGlo, 'f', 3) + "\n"; return prnGlo; } else if (maxResGPS > MAXRES_PHASE_GPS) { _log += "Outlier Phase " + prnGPS + " " + QByteArray::number(maxResGPS, 'f', 3) + "\n"; return prnGPS; } } else if (iPhase == 0 && maxResGPS > MAXRES_CODE) { _log += "Outlier Code " + prnGPS + " " + QByteArray::number(maxResGPS, 'f', 3) + "\n"; return prnGPS; } return QString(); } // //////////////////////////////////////////////////////////////////////////// void bncModel::writeNMEAstr(const QString& nmStr) { Tracer tracer("bncModel::writeNMEAstr"); unsigned char XOR = 0; for (int ii = 0; ii < nmStr.length(); ii++) { XOR ^= (unsigned char) nmStr[ii].toAscii(); } QString outStr = '$' + nmStr + QString("*%1\n").arg(int(XOR), 0, 16).toUpper(); if (_nmeaStream) { *_nmeaStream << outStr; _nmeaStream->flush(); } emit newNMEAstr(outStr.toAscii()); } // ////////////////////////////////////////////////////////////////////////////// void bncModel::kalman(const Matrix& AA, const ColumnVector& ll, const DiagonalMatrix& PP, SymmetricMatrix& QQ, ColumnVector& dx) { Tracer tracer("bncModel::kalman"); int nObs = AA.Nrows(); int nPar = AA.Ncols(); UpperTriangularMatrix SS = Cholesky(QQ).t(); Matrix SA = SS*AA.t(); Matrix SRF(nObs+nPar, nObs+nPar); SRF = 0; for (int ii = 1; ii <= nObs; ++ii) { SRF(ii,ii) = 1.0 / sqrt(PP(ii,ii)); } SRF.SubMatrix (nObs+1, nObs+nPar, 1, nObs) = SA; SRF.SymSubMatrix(nObs+1, nObs+nPar) = SS; UpperTriangularMatrix UU; QRZ(SRF, UU); SS = UU.SymSubMatrix(nObs+1, nObs+nPar); UpperTriangularMatrix SH_rt = UU.SymSubMatrix(1, nObs); Matrix YY = UU.SubMatrix(1, nObs, nObs+1, nObs+nPar); UpperTriangularMatrix SHi = SH_rt.i(); Matrix KT = SHi * YY; SymmetricMatrix Hi; Hi << SHi * SHi.t(); dx = KT.t() * ll; QQ << (SS.t() * SS); } // Phase Wind-Up Correction /////////////////////////////////////////////////////////////////////////// double bncModel::windUp(const QString& prn, const ColumnVector& rSat, const ColumnVector& rRec) { Tracer tracer("bncModel::windUp"); double Mjd = _time.mjd() + _time.daysec() / 86400.0; // First time - initialize to zero // ------------------------------- if (!_windUpTime.contains(prn)) { _windUpSum[prn] = 0.0; } // Compute the correction for new time // ----------------------------------- if (!_windUpTime.contains(prn) || _windUpTime[prn] != Mjd) { _windUpTime[prn] = Mjd; // Unit Vector GPS Satellite --> Receiver // -------------------------------------- ColumnVector rho = rRec - rSat; rho /= rho.norm_Frobenius(); // GPS Satellite unit Vectors sz, sy, sx // ------------------------------------- ColumnVector sz = -rSat / rSat.norm_Frobenius(); ColumnVector xSun = Sun(Mjd); xSun /= xSun.norm_Frobenius(); ColumnVector sy = crossproduct(sz, xSun); ColumnVector sx = crossproduct(sy, sz); // Effective Dipole of the GPS Satellite Antenna // --------------------------------------------- ColumnVector dipSat = sx - rho * DotProduct(rho,sx) - crossproduct(rho, sy); // Receiver unit Vectors rx, ry // ---------------------------- ColumnVector rx(3); ColumnVector ry(3); double recEll[3]; xyz2ell(rRec.data(), recEll) ; double neu[3]; neu[0] = 1.0; neu[1] = 0.0; neu[2] = 0.0; neu2xyz(recEll, neu, rx.data()); neu[0] = 0.0; neu[1] = -1.0; neu[2] = 0.0; neu2xyz(recEll, neu, ry.data()); // Effective Dipole of the Receiver Antenna // ---------------------------------------- ColumnVector dipRec = rx - rho * DotProduct(rho,rx) + crossproduct(rho, ry); // Resulting Effect // ---------------- double alpha = DotProduct(dipSat,dipRec) / (dipSat.norm_Frobenius() * dipRec.norm_Frobenius()); if (alpha > 1.0) alpha = 1.0; if (alpha < -1.0) alpha = -1.0; double dphi = acos(alpha) / 2.0 / M_PI; // in cycles if ( DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0 ) { dphi = -dphi; } _windUpSum[prn] = floor(_windUpSum[prn] - dphi + 0.5) + dphi; } return _windUpSum[prn]; } // /////////////////////////////////////////////////////////////////////////// void bncModel::cmpEle(t_satData* satData) { Tracer tracer("bncModel::cmpEle"); ColumnVector rr = satData->xx - _xcBanc.Rows(1,3); double rho = rr.norm_Frobenius(); double neu[3]; xyz2neu(_ellBanc.data(), rr.data(), neu); satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho ); if (neu[2] < 0) { satData->eleSat *= -1.0; } satData->azSat = atan2(neu[1], neu[0]); } // /////////////////////////////////////////////////////////////////////////// void bncModel::addAmb(t_satData* satData) { Tracer tracer("bncModel::addAmb"); bool found = false; for (int iPar = 1; iPar <= _params.size(); iPar++) { if (_params[iPar-1]->type == bncParam::AMB_L3 && _params[iPar-1]->prn == satData->prn) { found = true; break; } } if (!found) { bncParam* par = new bncParam(bncParam::AMB_L3, _params.size()+1, satData->prn); _params.push_back(par); par->xx = satData->L3 - cmpValue(satData, true); } } // /////////////////////////////////////////////////////////////////////////// void bncModel::addObs(int iPhase, unsigned& iObs, t_satData* satData, Matrix& AA, ColumnVector& ll, DiagonalMatrix& PP) { Tracer tracer("bncModel::addObs"); const double ELEWGHT = 20.0; double ellWgtCoef = 1.0; double eleD = satData->eleSat * 180.0 / M_PI; if (eleD < ELEWGHT) { ellWgtCoef = 1.5 - 0.5 / (ELEWGHT - 10.0) * (eleD - 10.0); } // Remember Observation Index // -------------------------- ++iObs; satData->obsIndex = iObs; // Phase Observations // ------------------ if (iPhase == 1) { ll(iObs) = satData->L3 - cmpValue(satData, true); double sigL3 = _sigL3; if (satData->system() == 'R') { sigL3 *= GLONASS_WEIGHT_FACTOR; } PP(iObs,iObs) = 1.0 / (sigL3 * sigL3) / (ellWgtCoef * ellWgtCoef); for (int iPar = 1; iPar <= _params.size(); iPar++) { if (_params[iPar-1]->type == bncParam::AMB_L3 && _params[iPar-1]->prn == satData->prn) { ll(iObs) -= _params[iPar-1]->xx; } AA(iObs, iPar) = _params[iPar-1]->partial(satData, true); } } // Code Observations // ----------------- else { ll(iObs) = satData->P3 - cmpValue(satData, false); PP(iObs,iObs) = 1.0 / (_sigP3 * _sigP3) / (ellWgtCoef * ellWgtCoef); for (int iPar = 1; iPar <= _params.size(); iPar++) { AA(iObs, iPar) = _params[iPar-1]->partial(satData, false); } } } // /////////////////////////////////////////////////////////////////////////// QByteArray bncModel::printRes(int iPhase, const ColumnVector& vv, const QMap<QString, t_satData*>& satDataMap) { Tracer tracer("bncModel::printRes"); ostringstream str; str.setf(ios::fixed); QMapIterator<QString, t_satData*> it(satDataMap); while (it.hasNext()) { it.next(); t_satData* satData = it.value(); if (satData->obsIndex != 0) { str << _time.timestr(1) << " RES " << satData->prn.toAscii().data() << (iPhase ? " L3 " : " P3 ") << setw(9) << setprecision(4) << vv(satData->obsIndex) << endl; } } return QByteArray(str.str().c_str()); } // /////////////////////////////////////////////////////////////////////////// void bncModel::findMaxRes(const ColumnVector& vv, const QMap<QString, t_satData*>& satData, QString& prnGPS, QString& prnGlo, double& maxResGPS, double& maxResGlo) { Tracer tracer("bncModel::findMaxRes"); maxResGPS = 0.0; maxResGlo = 0.0; QMapIterator<QString, t_satData*> it(satData); while (it.hasNext()) { it.next(); t_satData* satData = it.value(); if (satData->obsIndex != 0) { QString prn = satData->prn; if (prn[0] == 'R') { if (fabs(vv(satData->obsIndex)) > maxResGlo) { maxResGlo = fabs(vv(satData->obsIndex)); prnGlo = prn; } } else { if (fabs(vv(satData->obsIndex)) > maxResGPS) { maxResGPS = fabs(vv(satData->obsIndex)); prnGPS = prn; } } } } } // Update Step (private - loop over outliers) //////////////////////////////////////////////////////////////////////////// t_irc bncModel::update_p(t_epoData* epoData) { Tracer tracer("bncModel::update_p"); // Save Variance-Covariance Matrix, and Status Vector // -------------------------------------------------- rememberState(epoData); QString lastOutlierPrn; // Try with all satellites, then with all minus one, etc. // ------------------------------------------------------ while (selectSatellites(lastOutlierPrn, epoData->satData) == success) { QByteArray strResCode; QByteArray strResPhase; // Bancroft Solution // ----------------- if (cmpBancroft(epoData) != success) { break; } // First update using code observations, then phase observations // ------------------------------------------------------------- for (int iPhase = 0; iPhase <= (_usePhase ? 1 : 0); iPhase++) { // Status Prediction // ----------------- predict(iPhase, epoData); // Create First-Design Matrix // -------------------------- unsigned nPar = _params.size(); unsigned nObs = 0; if (iPhase == 0) { nObs = epoData->sizeAll() - epoData->sizeSys('R'); // Glonass code not used } else { nObs = epoData->sizeAll(); } // Prepare first-design Matrix, vector observed-computed // ----------------------------------------------------- Matrix AA(nObs, nPar); // first design matrix ColumnVector ll(nObs); // tems observed-computed DiagonalMatrix PP(nObs); PP = 0.0; unsigned iObs = 0; QMapIterator<QString, t_satData*> it(epoData->satData); while (it.hasNext()) { it.next(); t_satData* satData = it.value(); if (iPhase == 1 || satData->system() != 'R') { QString prn = satData->prn; addObs(iPhase, iObs, satData, AA, ll, PP); } } // Compute Filter Update // --------------------- ColumnVector dx; kalman(AA, ll, PP, _QQ, dx); ColumnVector vv = ll - AA * dx; // Print Residuals // --------------- if (iPhase == 0) { strResCode = printRes(iPhase, vv, epoData->satData); } else { strResPhase = printRes(iPhase, vv, epoData->satData); } // Check the residuals // ------------------- lastOutlierPrn = outlierDetection(iPhase, vv, epoData->satData); // No Outlier Detected // ------------------- if (lastOutlierPrn.isEmpty()) { QVectorIterator<bncParam*> itPar(_params); while (itPar.hasNext()) { bncParam* par = itPar.next(); par->xx += dx(par->index); } if (!_usePhase || iPhase == 1) { if (_outlierGPS.size() > 0 || _outlierGlo.size() > 0) { _log += "Neglected PRNs: "; if (!_outlierGPS.isEmpty()) { _log += _outlierGPS.last() + ' '; } QStringListIterator itGlo(_outlierGlo); while (itGlo.hasNext()) { QString prn = itGlo.next(); _log += prn + ' '; } } _log += '\n'; _log += strResCode + strResPhase; return success; } } // Outlier Found // ------------- else { restoreState(epoData); break; } } // for iPhase } // while selectSatellites restoreState(epoData); return failure; } // Remeber Original State Vector and Variance-Covariance Matrix //////////////////////////////////////////////////////////////////////////// void bncModel::rememberState(t_epoData* epoData) { _QQ_sav = _QQ; QVectorIterator<bncParam*> itSav(_params_sav); while (itSav.hasNext()) { bncParam* par = itSav.next(); delete par; } _params_sav.clear(); QVectorIterator<bncParam*> it(_params); while (it.hasNext()) { bncParam* par = it.next(); _params_sav.push_back(new bncParam(*par)); } _epoData_sav->deepCopy(epoData); } // Restore Original State Vector and Variance-Covariance Matrix //////////////////////////////////////////////////////////////////////////// void bncModel::restoreState(t_epoData* epoData) { _QQ = _QQ_sav; QVectorIterator<bncParam*> it(_params); while (it.hasNext()) { bncParam* par = it.next(); delete par; } _params.clear(); QVectorIterator<bncParam*> itSav(_params_sav); while (itSav.hasNext()) { bncParam* par = itSav.next(); _params.push_back(new bncParam(*par)); } epoData->deepCopy(_epoData_sav); } // //////////////////////////////////////////////////////////////////////////// t_irc bncModel::selectSatellites(const QString& lastOutlierPrn, QMap<QString, t_satData*>& satData) { // First Call // ---------- if (lastOutlierPrn.isEmpty()) { _outlierGPS.clear(); _outlierGlo.clear(); return success; } // Second and next trials // ---------------------- else { if (lastOutlierPrn[0] == 'R') { _outlierGlo << lastOutlierPrn; } // Remove all Glonass Outliers // --------------------------- QStringListIterator it(_outlierGlo); while (it.hasNext()) { QString prn = it.next(); if (satData.contains(prn)) { delete satData.take(prn); } } if (lastOutlierPrn[0] == 'R') { _outlierGPS.clear(); return success; } // GPS Outlier appeared for the first time - try to delete it // ---------------------------------------------------------- if (_outlierGPS.indexOf(lastOutlierPrn) == -1) { _outlierGPS << lastOutlierPrn; if (satData.contains(lastOutlierPrn)) { delete satData.take(lastOutlierPrn); } return success; } } return failure; }