source: ntrip/branches/BNC_2.12/src/bncutils.cpp@ 8075

Last change on this file since 8075 was 8064, checked in by wiese, 7 years ago

ADD: leap second Jan 2017

File size: 26.5 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: bncutils
30 *
31 * Purpose: Auxiliary Functions
32 *
33 * Author: L. Mervart
34 *
35 * Created: 30-Aug-2006
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iostream>
42#include <ctime>
43#include <math.h>
44
45#include <QRegExp>
46#include <QStringList>
47#include <QDateTime>
48
49#include <newmatap.h>
50
51#include "bncutils.h"
52#include "bnccore.h"
53
54using namespace std;
55
56struct leapseconds { /* specify the day of leap second */
57 int day; /* this is the day, where 23:59:59 exists 2 times */
58 int month; /* not the next day! */
59 int year;
60 int taicount;
61};
62static const int months[13] = {0,31,28,31,30,31,30,31,31,30,31,30,31};
63static const struct leapseconds leap[] = {
64/*{31, 12, 1971, 10},*/
65/*{30, 06, 1972, 11},*/
66/*{31, 12, 1972, 12},*/
67/*{31, 12, 1973, 13},*/
68/*{31, 12, 1974, 14},*/
69/*{31, 12, 1975, 15},*/
70/*{31, 12, 1976, 16},*/
71/*{31, 12, 1977, 17},*/
72/*{31, 12, 1978, 18},*/
73/*{31, 12, 1979, 19},*/
74{30, 06, 1981,20},
75{30, 06, 1982,21},
76{30, 06, 1983,22},
77{30, 06, 1985,23},
78{31, 12, 1987,24},
79{31, 12, 1989,25},
80{31, 12, 1990,26},
81{30, 06, 1992,27},
82{30, 06, 1993,28},
83{30, 06, 1994,29},
84{31, 12, 1995,30},
85{30, 06, 1997,31},
86{31, 12, 1998,32},
87{31, 12, 2005,33},
88{31, 12, 2008,34},
89{30, 06, 2012,35},
90{30, 06, 2015,36},
91{01, 01, 2017,37},
92{0,0,0,0} /* end marker */
93};
94
95#define GPSLEAPSTART 19 /* 19 leap seconds existed at 6.1.1980 */
96
97static int longyear(int year, int month)
98{
99 if(!(year % 4) && (!(year % 400) || (year % 100)))
100 {
101 if(!month || month == 2)
102 return 1;
103 }
104 return 0;
105}
106
107int gnumleap(int year, int month, int day)
108{
109 int ls = 0;
110 const struct leapseconds *l;
111
112 for(l = leap; l->taicount && year >= l->year; ++l)
113 {
114 if(year > l->year || month > l->month || (month == l->month && day > l->day))
115 ls = l->taicount - GPSLEAPSTART;
116 }
117 return ls;
118}
119
120/* Convert Moscow time into UTC (fixnumleap == 1) or GPS (fixnumleap == 0) */
121void updatetime(int *week, int *secOfWeek, int mSecOfWeek, bool fixnumleap)
122{
123 int y,m,d,k,l, nul;
124 unsigned int j = *week*(7*24*60*60) + *secOfWeek + 5*24*60*60+3*60*60;
125 int glo_daynumber = 0, glo_timeofday;
126 for(y = 1980; j >= (unsigned int)(k = (l = (365+longyear(y,0)))*24*60*60)
127 + gnumleap(y+1,1,1); ++y)
128 {
129 j -= k; glo_daynumber += l;
130 }
131 for(m = 1; j >= (unsigned int)(k = (l = months[m]+longyear(y, m))*24*60*60)
132 + gnumleap(y, m+1, 1); ++m)
133 {
134 j -= k; glo_daynumber += l;
135 }
136 for(d = 1; j >= 24UL*60UL*60UL + gnumleap(y, m, d+1); ++d)
137 j -= 24*60*60;
138 glo_daynumber -= 16*365+4-d;
139 nul = gnumleap(y, m, d);
140 glo_timeofday = j-nul;
141
142 // original version
143 // if(mSecOfWeek < 5*60*1000 && glo_timeofday > 23*60*60)
144 // *secOfWeek += 24*60*60;
145 // else if(glo_timeofday < 5*60 && mSecOfWeek > 23*60*60*1000)
146 // *secOfWeek -= 24*60*60;
147
148 // new version
149 if(mSecOfWeek < 4*60*60*1000 && glo_timeofday > 20*60*60)
150 *secOfWeek += 24*60*60;
151 else if(glo_timeofday < 4*60*60 && mSecOfWeek > 20*60*60*1000)
152 *secOfWeek -= 24*60*60;
153
154 *secOfWeek += mSecOfWeek/1000-glo_timeofday;
155 if(fixnumleap)
156 *secOfWeek -= nul;
157 if(*secOfWeek < 0) {*secOfWeek += 24*60*60*7; --*week; }
158 if(*secOfWeek >= 24*60*60*7) {*secOfWeek -= 24*60*60*7; ++*week; }
159}
160
161//
162////////////////////////////////////////////////////////////////////////////
163void expandEnvVar(QString& str) {
164
165 QRegExp rx("(\\$\\{.+\\})");
166
167 if (rx.indexIn(str) != -1) {
168 QStringListIterator it(rx.capturedTexts());
169 if (it.hasNext()) {
170 QString rxStr = it.next();
171 QString envVar = rxStr.mid(2,rxStr.length()-3);
172 str.replace(rxStr, qgetenv(envVar.toAscii()));
173 }
174 }
175
176}
177
178// Strip White Space
179////////////////////////////////////////////////////////////////////////////
180void stripWhiteSpace(string& str) {
181 if (!str.empty()) {
182 string::size_type beg = str.find_first_not_of(" \t\f\n\r\v");
183 string::size_type end = str.find_last_not_of(" \t\f\n\r\v");
184 if (beg > str.max_size())
185 str.erase();
186 else
187 str = str.substr(beg, end-beg+1);
188 }
189}
190
191//
192////////////////////////////////////////////////////////////////////////////
193QDateTime dateAndTimeFromGPSweek(int GPSWeek, double GPSWeeks) {
194
195 static const QDate zeroEpoch(1980, 1, 6);
196
197 QDate date(zeroEpoch);
198 QTime time(0,0,0,0);
199
200 int weekDays = int(GPSWeeks) / 86400;
201 date = date.addDays( GPSWeek * 7 + weekDays );
202 time = time.addMSecs( int( (GPSWeeks - 86400 * weekDays) * 1e3 ) );
203
204 return QDateTime(date,time);
205}
206
207//
208////////////////////////////////////////////////////////////////////////////
209void currentGPSWeeks(int& week, double& sec) {
210
211 QDateTime currDateTimeGPS;
212
213 if ( BNC_CORE->dateAndTimeGPSSet() ) {
214 currDateTimeGPS = BNC_CORE->dateAndTimeGPS();
215 }
216 else {
217 currDateTimeGPS = QDateTime::currentDateTime().toUTC();
218 QDate hlp = currDateTimeGPS.date();
219 currDateTimeGPS = currDateTimeGPS.addSecs(gnumleap(hlp.year(),
220 hlp.month(), hlp.day()));
221 }
222
223 QDate currDateGPS = currDateTimeGPS.date();
224 QTime currTimeGPS = currDateTimeGPS.time();
225
226 week = int( (double(currDateGPS.toJulianDay()) - 2444244.5) / 7 );
227
228 sec = (currDateGPS.dayOfWeek() % 7) * 24.0 * 3600.0 +
229 currTimeGPS.hour() * 3600.0 +
230 currTimeGPS.minute() * 60.0 +
231 currTimeGPS.second() +
232 currTimeGPS.msec() / 1000.0;
233}
234
235//
236////////////////////////////////////////////////////////////////////////////
237QDateTime currentDateAndTimeGPS() {
238 if ( BNC_CORE->dateAndTimeGPSSet() ) {
239 return BNC_CORE->dateAndTimeGPS();
240 }
241 else {
242 int GPSWeek;
243 double GPSWeeks;
244 currentGPSWeeks(GPSWeek, GPSWeeks);
245 return dateAndTimeFromGPSweek(GPSWeek, GPSWeeks);
246 }
247}
248
249//
250////////////////////////////////////////////////////////////////////////////
251bool checkForWrongObsEpoch(bncTime obsEpoch) {
252 const double maxDt = 600.0;
253 long iSec = long(floor(obsEpoch.gpssec()+0.5));
254 long obsTime = obsEpoch.gpsw()*7*24*3600 + iSec;
255 int week;
256 double sec;
257 currentGPSWeeks(week, sec);
258 long currTime = week * 7*24*3600 + long(sec);
259
260 if (fabs(currTime - obsTime) > maxDt) {
261 return true;
262 }
263 return false;
264}
265//
266////////////////////////////////////////////////////////////////////////////
267QByteArray ggaString(const QByteArray& latitude,
268 const QByteArray& longitude,
269 const QByteArray& height,
270 const QString& ggaType) {
271
272 double lat = strtod(latitude,NULL);
273 double lon = strtod(longitude,NULL);
274 double hei = strtod(height,NULL);
275 QString sentences = "GPGGA,";
276 if (ggaType.contains("GNGGA")) {
277 sentences = "GNGGA,";
278 }
279
280 const char* flagN="N";
281 const char* flagE="E";
282 if (lon >180.) {lon=(lon-360.)*(-1.); flagE="W";}
283 if ((lon < 0.) && (lon >= -180.)) {lon=lon*(-1.); flagE="W";}
284 if (lon < -180.) {lon=(lon+360.); flagE="E";}
285 if (lat < 0.) {lat=lat*(-1.); flagN="S";}
286 QTime ttime(QDateTime::currentDateTime().toUTC().time());
287 int lat_deg = (int)lat;
288 double lat_min=(lat-lat_deg)*60.;
289 int lon_deg = (int)lon;
290 double lon_min=(lon-lon_deg)*60.;
291 int hh = 0 , mm = 0;
292 double ss = 0.0;
293 hh=ttime.hour();
294 mm=ttime.minute();
295 ss=(double)ttime.second()+0.001*ttime.msec();
296 QString gga;
297 gga += sentences;
298 gga += QString("%1%2%3,").arg((int)hh, 2, 10, QLatin1Char('0')).arg((int)mm, 2, 10, QLatin1Char('0')).arg((int)ss, 2, 10, QLatin1Char('0'));
299 gga += QString("%1%2,").arg((int)lat_deg,2, 10, QLatin1Char('0')).arg(lat_min, 7, 'f', 4, QLatin1Char('0'));
300 gga += flagN;
301 gga += QString(",%1%2,").arg((int)lon_deg,3, 10, QLatin1Char('0')).arg(lon_min, 7, 'f', 4, QLatin1Char('0'));
302 gga += flagE + QString(",1,05,1.00");
303 gga += QString(",%1,").arg(hei, 2, 'f', 1);
304 gga += QString("M,10.000,M,,");
305 int xori;
306
307 char XOR = 0;
308 char Buff[gga.size()];
309 strncpy(Buff, gga.toAscii().data(), gga.size());
310 int iLen = strlen(Buff);
311 for (xori = 0; xori < iLen; xori++) {
312 XOR ^= (char)Buff[xori];
313 }
314 gga = "$" + gga + QString("*%1").arg(XOR, 2, 16, QLatin1Char('0'));
315
316 return gga.toAscii();
317}
318
319//
320////////////////////////////////////////////////////////////////////////////
321void RSW_to_XYZ(const ColumnVector& rr, const ColumnVector& vv,
322 const ColumnVector& rsw, ColumnVector& xyz) {
323
324 ColumnVector along = vv / vv.norm_Frobenius();
325 ColumnVector cross = crossproduct(rr, vv); cross /= cross.norm_Frobenius();
326 ColumnVector radial = crossproduct(along, cross);
327
328 Matrix RR(3,3);
329 RR.Column(1) = radial;
330 RR.Column(2) = along;
331 RR.Column(3) = cross;
332
333 xyz = RR * rsw;
334}
335
336// Transformation xyz --> radial, along track, out-of-plane
337////////////////////////////////////////////////////////////////////////////
338void XYZ_to_RSW(const ColumnVector& rr, const ColumnVector& vv,
339 const ColumnVector& xyz, ColumnVector& rsw) {
340
341 ColumnVector along = vv / vv.norm_Frobenius();
342 ColumnVector cross = crossproduct(rr, vv); cross /= cross.norm_Frobenius();
343 ColumnVector radial = crossproduct(along, cross);
344
345 rsw.ReSize(3);
346 rsw(1) = DotProduct(xyz, radial);
347 rsw(2) = DotProduct(xyz, along);
348 rsw(3) = DotProduct(xyz, cross);
349}
350
351// Rectangular Coordinates -> Ellipsoidal Coordinates
352////////////////////////////////////////////////////////////////////////////
353t_irc xyz2ell(const double* XYZ, double* Ell) {
354
355 const double bell = t_CST::aell*(1.0-1.0/t_CST::fInv) ;
356 const double e2 = (t_CST::aell*t_CST::aell-bell*bell)/(t_CST::aell*t_CST::aell) ;
357 const double e2c = (t_CST::aell*t_CST::aell-bell*bell)/(bell*bell) ;
358
359 double nn, ss, zps, hOld, phiOld, theta, sin3, cos3;
360
361 ss = sqrt(XYZ[0]*XYZ[0]+XYZ[1]*XYZ[1]) ;
362 zps = XYZ[2]/ss ;
363 theta = atan( (XYZ[2]*t_CST::aell) / (ss*bell) );
364 sin3 = sin(theta) * sin(theta) * sin(theta);
365 cos3 = cos(theta) * cos(theta) * cos(theta);
366
367 // Closed formula
368 Ell[0] = atan( (XYZ[2] + e2c * bell * sin3) / (ss - e2 * t_CST::aell * cos3) );
369 Ell[1] = atan2(XYZ[1],XYZ[0]) ;
370 nn = t_CST::aell/sqrt(1.0-e2*sin(Ell[0])*sin(Ell[0])) ;
371 Ell[2] = ss / cos(Ell[0]) - nn;
372
373 const int MAXITER = 100;
374 for (int ii = 1; ii <= MAXITER; ii++) {
375 nn = t_CST::aell/sqrt(1.0-e2*sin(Ell[0])*sin(Ell[0])) ;
376 hOld = Ell[2] ;
377 phiOld = Ell[0] ;
378 Ell[2] = ss/cos(Ell[0])-nn ;
379 Ell[0] = atan(zps/(1.0-e2*nn/(nn+Ell[2]))) ;
380 if ( fabs(phiOld-Ell[0]) <= 1.0e-11 && fabs(hOld-Ell[2]) <= 1.0e-5 ) {
381 return success;
382 }
383 }
384
385 return failure;
386}
387
388// Rectangular Coordinates -> North, East, Up Components
389////////////////////////////////////////////////////////////////////////////
390void xyz2neu(const double* Ell, const double* xyz, double* neu) {
391
392 double sinPhi = sin(Ell[0]);
393 double cosPhi = cos(Ell[0]);
394 double sinLam = sin(Ell[1]);
395 double cosLam = cos(Ell[1]);
396
397 neu[0] = - sinPhi*cosLam * xyz[0]
398 - sinPhi*sinLam * xyz[1]
399 + cosPhi * xyz[2];
400
401 neu[1] = - sinLam * xyz[0]
402 + cosLam * xyz[1];
403
404 neu[2] = + cosPhi*cosLam * xyz[0]
405 + cosPhi*sinLam * xyz[1]
406 + sinPhi * xyz[2];
407}
408
409// North, East, Up Components -> Rectangular Coordinates
410////////////////////////////////////////////////////////////////////////////
411void neu2xyz(const double* Ell, const double* neu, double* xyz) {
412
413 double sinPhi = sin(Ell[0]);
414 double cosPhi = cos(Ell[0]);
415 double sinLam = sin(Ell[1]);
416 double cosLam = cos(Ell[1]);
417
418 xyz[0] = - sinPhi*cosLam * neu[0]
419 - sinLam * neu[1]
420 + cosPhi*cosLam * neu[2];
421
422 xyz[1] = - sinPhi*sinLam * neu[0]
423 + cosLam * neu[1]
424 + cosPhi*sinLam * neu[2];
425
426 xyz[2] = + cosPhi * neu[0]
427 + sinPhi * neu[2];
428}
429
430// Rectangular Coordinates -> Geocentric Coordinates
431////////////////////////////////////////////////////////////////////////////
432t_irc xyz2geoc(const double* XYZ, double* Geoc) {
433
434 const double bell = t_CST::aell*(1.0-1.0/t_CST::fInv) ;
435 const double e2 = (t_CST::aell*t_CST::aell-bell*bell)/(t_CST::aell*t_CST::aell) ;
436 double Ell[3];
437 if (xyz2ell(XYZ, Ell) != success) {
438 return failure;
439 }
440 double rho = sqrt(XYZ[0]*XYZ[0]+XYZ[1]*XYZ[1]+XYZ[2]*XYZ[2]);
441 double Rn = t_CST::aell/sqrt(1-e2*pow(sin(Ell[0]),2));
442
443 Geoc[0] = atan((1-e2 * Rn/(Rn + Ell[2])) * tan(Ell[0]));
444 Geoc[1] = Ell[1];
445 Geoc[2] = rho-t_CST::rgeoc;
446
447 return success;
448}
449
450//
451////////////////////////////////////////////////////////////////////////////
452double Frac (double x) {
453 return x-floor(x);
454}
455
456//
457////////////////////////////////////////////////////////////////////////////
458double Modulo (double x, double y) {
459 return y*Frac(x/y);
460}
461
462// Round to nearest integer
463////////////////////////////////////////////////////////////////////////////
464double nint(double val) {
465 return ((val < 0.0) ? -floor(fabs(val)+0.5) : floor(val+0.5));
466}
467
468//
469////////////////////////////////////////////////////////////////////////////
470int factorial(int n) {
471 if (n == 0) {
472 return 1;
473 }
474 else {
475 return (n * factorial(n - 1));
476 }
477}
478
479//
480////////////////////////////////////////////////////////////////////////////
481double associatedLegendreFunction(int n, int m, double t) {
482 double sum = 0.0;
483 int r = (int) floor((n - m) / 2);
484 for (int k = 0; k <= r; k++) {
485 sum += (pow(-1.0, (double)k) * factorial(2*n - 2*k)
486 / (factorial(k) * factorial(n-k) * factorial(n-m-2*k))
487 * pow(t, (double)n-m-2*k));
488 }
489 double fac = pow(2.0,(double) -n) * pow((1 - t*t), (double)m/2);
490 return sum *= fac;
491}
492
493
494// Jacobian XYZ --> NEU
495////////////////////////////////////////////////////////////////////////////
496void jacobiXYZ_NEU(const double* Ell, Matrix& jacobi) {
497
498 Tracer tracer("jacobiXYZ_NEU");
499
500 double sinPhi = sin(Ell[0]);
501 double cosPhi = cos(Ell[0]);
502 double sinLam = sin(Ell[1]);
503 double cosLam = cos(Ell[1]);
504
505 jacobi(1,1) = - sinPhi * cosLam;
506 jacobi(1,2) = - sinPhi * sinLam;
507 jacobi(1,3) = cosPhi;
508
509 jacobi(2,1) = - sinLam;
510 jacobi(2,2) = cosLam;
511 jacobi(2,3) = 0.0;
512
513 jacobi(3,1) = cosPhi * cosLam;
514 jacobi(3,2) = cosPhi * sinLam;
515 jacobi(3,3) = sinPhi;
516}
517
518// Jacobian Ell --> XYZ
519////////////////////////////////////////////////////////////////////////////
520void jacobiEll_XYZ(const double* Ell, Matrix& jacobi) {
521
522 Tracer tracer("jacobiEll_XYZ");
523
524 double sinPhi = sin(Ell[0]);
525 double cosPhi = cos(Ell[0]);
526 double sinLam = sin(Ell[1]);
527 double cosLam = cos(Ell[1]);
528 double hh = Ell[2];
529
530 double bell = t_CST::aell*(1.0-1.0/t_CST::fInv);
531 double e2 = (t_CST::aell*t_CST::aell-bell*bell)/(t_CST::aell*t_CST::aell) ;
532 double nn = t_CST::aell/sqrt(1.0-e2*sinPhi*sinPhi) ;
533
534 jacobi(1,1) = -(nn+hh) * sinPhi * cosLam;
535 jacobi(1,2) = -(nn+hh) * cosPhi * sinLam;
536 jacobi(1,3) = cosPhi * cosLam;
537
538 jacobi(2,1) = -(nn+hh) * sinPhi * sinLam;
539 jacobi(2,2) = (nn+hh) * cosPhi * cosLam;
540 jacobi(2,3) = cosPhi * sinLam;
541
542 jacobi(3,1) = (nn*(1.0-e2)+hh) * cosPhi;
543 jacobi(3,2) = 0.0;
544 jacobi(3,3) = sinPhi;
545}
546
547// Covariance Matrix in NEU
548////////////////////////////////////////////////////////////////////////////
549void covariXYZ_NEU(const SymmetricMatrix& QQxyz, const double* Ell,
550 SymmetricMatrix& Qneu) {
551
552 Tracer tracer("covariXYZ_NEU");
553
554 Matrix CC(3,3);
555 jacobiXYZ_NEU(Ell, CC);
556 Qneu << CC * QQxyz * CC.t();
557}
558
559// Covariance Matrix in XYZ
560////////////////////////////////////////////////////////////////////////////
561void covariNEU_XYZ(const SymmetricMatrix& QQneu, const double* Ell,
562 SymmetricMatrix& Qxyz) {
563
564 Tracer tracer("covariNEU_XYZ");
565
566 Matrix CC(3,3);
567 jacobiXYZ_NEU(Ell, CC);
568 Qxyz << CC.t() * QQneu * CC;
569}
570
571// Fourth order Runge-Kutta numerical integrator for ODEs
572////////////////////////////////////////////////////////////////////////////
573ColumnVector rungeKutta4(
574 double xi, // the initial x-value
575 const ColumnVector& yi, // vector of the initial y-values
576 double dx, // the step size for the integration
577 double* acc, // aditional acceleration
578 ColumnVector (*der)(double x, const ColumnVector& y, double* acc)
579 // A pointer to a function that computes the
580 // derivative of a function at a point (x,y)
581 ) {
582
583 ColumnVector k1 = der(xi , yi , acc) * dx;
584 ColumnVector k2 = der(xi+dx/2.0, yi+k1/2.0, acc) * dx;
585 ColumnVector k3 = der(xi+dx/2.0, yi+k2/2.0, acc) * dx;
586 ColumnVector k4 = der(xi+dx , yi+k3 , acc) * dx;
587
588 ColumnVector yf = yi + k1/6.0 + k2/3.0 + k3/3.0 + k4/6.0;
589
590 return yf;
591}
592//
593////////////////////////////////////////////////////////////////////////////
594double djul(long jj, long mm, double tt) {
595 long ii, kk;
596 double djul ;
597 if( mm <= 2 ) {
598 jj = jj - 1;
599 mm = mm + 12;
600 }
601 ii = jj/100;
602 kk = 2 - ii + ii/4;
603 djul = (365.25*jj - fmod( 365.25*jj, 1.0 )) - 679006.0;
604 djul = djul + floor( 30.6001*(mm + 1) ) + tt + kk;
605 return djul;
606}
607
608//
609////////////////////////////////////////////////////////////////////////////
610double gpjd(double second, int nweek) {
611 double deltat;
612 deltat = nweek*7.0 + second/86400.0 ;
613 return( 44244.0 + deltat) ;
614}
615
616//
617////////////////////////////////////////////////////////////////////////////
618void jdgp(double tjul, double & second, long & nweek) {
619 double deltat;
620 deltat = tjul - 44244.0 ;
621 nweek = (long) floor(deltat/7.0);
622 second = (deltat - (nweek)*7.0)*86400.0;
623}
624
625//
626////////////////////////////////////////////////////////////////////////////
627void jmt(double djul, long& jj, long& mm, double& dd) {
628 long ih, ih1, ih2 ;
629 double t1, t2, t3, t4;
630 t1 = 1.0 + djul - fmod( djul, 1.0 ) + 2400000.0;
631 t4 = fmod( djul, 1.0 );
632 ih = long( (t1 - 1867216.25)/36524.25 );
633 t2 = t1 + 1 + ih - ih/4;
634 t3 = t2 - 1720995.0;
635 ih1 = long( (t3 - 122.1)/365.25 );
636 t1 = 365.25*ih1 - fmod( 365.25*ih1, 1.0 );
637 ih2 = long( (t3 - t1)/30.6001 );
638 dd = t3 - t1 - (int)( 30.6001*ih2 ) + t4;
639 mm = ih2 - 1;
640 if ( ih2 > 13 ) mm = ih2 - 13;
641 jj = ih1;
642 if ( mm <= 2 ) jj = jj + 1;
643}
644
645//
646////////////////////////////////////////////////////////////////////////////
647void GPSweekFromDateAndTime(const QDateTime& dateTime,
648 int& GPSWeek, double& GPSWeeks) {
649
650 static const QDateTime zeroEpoch(QDate(1980, 1, 6),QTime(),Qt::UTC);
651
652 GPSWeek = zeroEpoch.daysTo(dateTime) / 7;
653
654 int weekDay = dateTime.date().dayOfWeek() + 1; // Qt: Monday = 1
655 if (weekDay > 7) weekDay = 1;
656
657 GPSWeeks = (weekDay - 1) * 86400.0
658 - dateTime.time().msecsTo(QTime()) / 1e3;
659}
660
661//
662////////////////////////////////////////////////////////////////////////////
663void GPSweekFromYMDhms(int year, int month, int day, int hour, int min,
664 double sec, int& GPSWeek, double& GPSWeeks) {
665
666 double mjd = djul(year, month, day);
667
668 long GPSWeek_long;
669 jdgp(mjd, GPSWeeks, GPSWeek_long);
670 GPSWeek = GPSWeek_long;
671 GPSWeeks += hour * 3600.0 + min * 60.0 + sec;
672}
673
674//
675////////////////////////////////////////////////////////////////////////////
676void mjdFromDateAndTime(const QDateTime& dateTime, int& mjd, double& dayfrac) {
677
678 static const QDate zeroDate(1858, 11, 17);
679
680 mjd = zeroDate.daysTo(dateTime.date());
681
682 dayfrac = (dateTime.time().hour() +
683 (dateTime.time().minute() +
684 (dateTime.time().second() +
685 dateTime.time().msec() / 1000.0) / 60.0) / 60.0) / 24.0;
686}
687
688//
689////////////////////////////////////////////////////////////////////////////
690bool findInVector(const vector<QString>& vv, const QString& str) {
691 std::vector<QString>::const_iterator it;
692 for (it = vv.begin(); it != vv.end(); ++it) {
693 if ( (*it) == str) {
694 return true;
695 }
696 }
697 return false;
698}
699
700//
701////////////////////////////////////////////////////////////////////////////
702int readInt(const QString& str, int pos, int len, int& value) {
703 bool ok;
704 value = str.mid(pos, len).toInt(&ok);
705 return ok ? 0 : 1;
706}
707
708//
709////////////////////////////////////////////////////////////////////////////
710int readDbl(const QString& str, int pos, int len, double& value) {
711 QString hlp = str.mid(pos, len);
712 for (int ii = 0; ii < hlp.length(); ii++) {
713 if (hlp[ii]=='D' || hlp[ii]=='d' || hlp[ii] == 'E') {
714 hlp[ii]='e';
715 }
716 }
717 bool ok;
718 value = hlp.toDouble(&ok);
719 return ok ? 0 : 1;
720}
721
722// Topocentrical Distance and Elevation
723////////////////////////////////////////////////////////////////////////////
724void topos(double xRec, double yRec, double zRec,
725 double xSat, double ySat, double zSat,
726 double& rho, double& eleSat, double& azSat) {
727
728 double dx[3];
729 dx[0] = xSat-xRec;
730 dx[1] = ySat-yRec;
731 dx[2] = zSat-zRec;
732
733 rho = sqrt( dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2] );
734
735 double xyzRec[3];
736 xyzRec[0] = xRec;
737 xyzRec[1] = yRec;
738 xyzRec[2] = zRec;
739
740 double Ell[3];
741 double neu[3];
742 xyz2ell(xyzRec, Ell);
743 xyz2neu(Ell, dx, neu);
744
745 eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
746 if (neu[2] < 0) {
747 eleSat *= -1.0;
748 }
749
750 azSat = atan2(neu[1], neu[0]);
751}
752
753// Degrees -> degrees, minutes, seconds
754////////////////////////////////////////////////////////////////////////////
755void deg2DMS(double decDeg, int& deg, int& min, double& sec) {
756 int sgn = (decDeg < 0.0 ? -1 : 1);
757 deg = static_cast<int>(decDeg);
758 min = sgn * static_cast<int>((decDeg - deg)*60);
759 sec = (sgn* (decDeg - deg) - min/60.0) * 3600.0;
760}
761
762//
763////////////////////////////////////////////////////////////////////////////
764QString fortranFormat(double value, int width, int prec) {
765 int expo = value == 0.0 ? 0 : int(log10(fabs(value)));
766 double mant = value == 0.0 ? 0 : value / pow(10.0, double(expo));
767 if (fabs(mant) >= 1.0) {
768 mant /= 10.0;
769 expo += 1;
770 }
771 if (expo >= 0) {
772 return QString("%1e+%2").arg(mant, width-4, 'f', prec).arg(expo, 2, 10, QChar('0'));
773 }
774 else {
775 return QString("%1e-%2").arg(mant, width-4, 'f', prec).arg(-expo, 2, 10, QChar('0'));
776 }
777}
778
779//
780//////////////////////////////////////////////////////////////////////////////
781void kalman(const Matrix& AA, const ColumnVector& ll, const DiagonalMatrix& PP,
782 SymmetricMatrix& QQ, ColumnVector& xx) {
783
784 Tracer tracer("kalman");
785
786 int nPar = AA.Ncols();
787 int nObs = AA.Nrows();
788 UpperTriangularMatrix SS = Cholesky(QQ).t();
789
790 Matrix SA = SS*AA.t();
791 Matrix SRF(nObs+nPar, nObs+nPar); SRF = 0;
792 for (int ii = 1; ii <= nObs; ++ii) {
793 SRF(ii,ii) = 1.0 / sqrt(PP(ii,ii));
794 }
795
796 SRF.SubMatrix (nObs+1, nObs+nPar, 1, nObs) = SA;
797 SRF.SymSubMatrix(nObs+1, nObs+nPar) = SS;
798
799 UpperTriangularMatrix UU;
800 QRZ(SRF, UU);
801
802 SS = UU.SymSubMatrix(nObs+1, nObs+nPar);
803 UpperTriangularMatrix SH_rt = UU.SymSubMatrix(1, nObs);
804 Matrix YY = UU.SubMatrix(1, nObs, nObs+1, nObs+nPar);
805
806 UpperTriangularMatrix SHi = SH_rt.i();
807
808 Matrix KT = SHi * YY;
809 SymmetricMatrix Hi; Hi << SHi * SHi.t();
810
811 xx += KT.t() * (ll - AA * xx);
812 QQ << (SS.t() * SS);
813}
814
815double accuracyFromIndex(int index, t_eph::e_type type) {
816
817 if (type == t_eph::GPS || type == t_eph::BDS || type == t_eph::SBAS
818 || type == t_eph::QZSS) {
819
820 if ((index >= 0) && (index <= 6)) {
821 if (index == 3) {
822 return ceil(10.0 * pow(2.0, (double(index) / 2.0) + 1.0)) / 10.0;
823 }
824 else {
825 return floor(10.0 * pow(2.0, (double(index) / 2.0) + 1.0)) / 10.0;
826 }
827 }
828 else if ((index > 6) && (index <= 15)) {
829 return (10.0 * pow(2.0, (double(index) - 2.0))) / 10.0;
830 }
831 else {
832 return 8192.0;
833 }
834 }
835
836 if (type == t_eph::Galileo) {
837
838 if ((index >= 0) && (index <= 49)) {
839 return (double(index) / 100.0);
840 }
841 else if ((index > 49) && (index <= 74)) {
842 return (50.0 + (double(index) - 50.0) * 2.0) / 100.0;
843 }
844 else if ((index > 74) && (index <= 99)) {
845 return 1.0 + (double(index) - 75.0) * 0.04;
846 }
847 else if ((index > 99) && (index <= 125)) {
848 return 2.0 + (double(index) - 100.0) * 0.16;
849 }
850 else {
851 return -1.0;
852 }
853 }
854
855 return double(index);
856}
857
858int indexFromAccuracy(double accuracy, t_eph::e_type type) {
859
860 if (type == t_eph::GPS || type == t_eph::BDS || type == t_eph::SBAS
861 || type == t_eph::QZSS) {
862
863 if (accuracy <= 2.40) {
864 return 0;
865 }
866 else if (accuracy <= 3.40) {
867 return 1;
868 }
869 else if (accuracy <= 4.85) {
870 return 2;
871 }
872 else if (accuracy <= 6.85) {
873 return 3;
874 }
875 else if (accuracy <= 9.65) {
876 return 4;
877 }
878 else if (accuracy <= 13.65) {
879 return 5;
880 }
881 else if (accuracy <= 24.00) {
882 return 6;
883 }
884 else if (accuracy <= 48.00) {
885 return 7;
886 }
887 else if (accuracy <= 96.00) {
888 return 8;
889 }
890 else if (accuracy <= 192.00) {
891 return 9;
892 }
893 else if (accuracy <= 384.00) {
894 return 10;
895 }
896 else if (accuracy <= 768.00) {
897 return 11;
898 }
899 else if (accuracy <= 1536.00) {
900 return 12;
901 }
902 else if (accuracy <= 3072.00) {
903 return 13;
904 }
905 else if (accuracy <= 6144.00) {
906 return 14;
907 }
908 else {
909 return 15;
910 }
911 }
912
913 if (type == t_eph::Galileo) {
914
915 if (accuracy <= 0.49) {
916 return int(ceil(accuracy * 100.0));
917 }
918 else if (accuracy <= 0.98) {
919 return int(50.0 + (((accuracy * 100.0) - 50) / 2.0));
920 }
921 else if (accuracy <= 2.0) {
922 return int(75.0 + ((accuracy - 1.0) / 0.04));
923 }
924 else if (accuracy <= 6.0) {
925 return int(100.0 + ((accuracy - 2.0) / 0.16));
926 }
927 else {
928 return 255;
929 }
930 }
931
932 return (type == t_eph::Galileo) ? 255 : 15;
933}
934
935// Returns CRC24
936////////////////////////////////////////////////////////////////////////////
937unsigned long CRC24(long size, const unsigned char *buf) {
938 unsigned long crc = 0;
939 int ii;
940 while (size--) {
941 crc ^= (*buf++) << (16);
942 for(ii = 0; ii < 8; ii++) {
943 crc <<= 1;
944 if (crc & 0x1000000) {
945 crc ^= 0x01864cfb;
946 }
947 }
948 }
949 return crc;
950}
951
Note: See TracBrowser for help on using the repository browser.