source: ntrip/branches/BNC_2.12/src/bncutils.cpp@ 8007

Last change on this file since 8007 was 7979, checked in by stuerze, 9 years ago

next leap second is added

File size: 26.0 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: bncutils
30 *
31 * Purpose: Auxiliary Functions
32 *
33 * Author: L. Mervart
34 *
35 * Created: 30-Aug-2006
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iostream>
42#include <ctime>
43#include <math.h>
44
45#include <QRegExp>
46#include <QStringList>
47#include <QDateTime>
48
49#include <newmatap.h>
50
51#include "bncutils.h"
52#include "bnccore.h"
53
54using namespace std;
55
56struct leapseconds { /* specify the day of leap second */
57 int day; /* this is the day, where 23:59:59 exists 2 times */
58 int month; /* not the next day! */
59 int year;
60 int taicount;
61};
62static const int months[13] = {0,31,28,31,30,31,30,31,31,30,31,30,31};
63static const struct leapseconds leap[] = {
64/*{31, 12, 1971, 10},*/
65/*{30, 06, 1972, 11},*/
66/*{31, 12, 1972, 12},*/
67/*{31, 12, 1973, 13},*/
68/*{31, 12, 1974, 14},*/
69/*{31, 12, 1975, 15},*/
70/*{31, 12, 1976, 16},*/
71/*{31, 12, 1977, 17},*/
72/*{31, 12, 1978, 18},*/
73/*{31, 12, 1979, 19},*/
74{30, 06, 1981,20},
75{30, 06, 1982,21},
76{30, 06, 1983,22},
77{30, 06, 1985,23},
78{31, 12, 1987,24},
79{31, 12, 1989,25},
80{31, 12, 1990,26},
81{30, 06, 1992,27},
82{30, 06, 1993,28},
83{30, 06, 1994,29},
84{31, 12, 1995,30},
85{30, 06, 1997,31},
86{31, 12, 1998,32},
87{31, 12, 2005,33},
88{31, 12, 2008,34},
89{30, 06, 2012,35},
90{30, 06, 2015,36},
91{31, 12, 2016,37},
92{0,0,0,0} /* end marker */
93};
94
95#define GPSLEAPSTART 19 /* 19 leap seconds existed at 6.1.1980 */
96
97static int longyear(int year, int month)
98{
99 if(!(year % 4) && (!(year % 400) || (year % 100)))
100 {
101 if(!month || month == 2)
102 return 1;
103 }
104 return 0;
105}
106
107int gnumleap(int year, int month, int day)
108{
109 int ls = 0;
110 const struct leapseconds *l;
111
112 for(l = leap; l->taicount && year >= l->year; ++l)
113 {
114 if(year > l->year || month > l->month || (month == l->month && day > l->day))
115 ls = l->taicount - GPSLEAPSTART;
116 }
117 return ls;
118}
119
120/* Convert Moscow time into UTC (fixnumleap == 1) or GPS (fixnumleap == 0) */
121void updatetime(int *week, int *secOfWeek, int mSecOfWeek, bool fixnumleap)
122{
123 int y,m,d,k,l, nul;
124 unsigned int j = *week*(7*24*60*60) + *secOfWeek + 5*24*60*60+3*60*60;
125 int glo_daynumber = 0, glo_timeofday;
126 for(y = 1980; j >= (unsigned int)(k = (l = (365+longyear(y,0)))*24*60*60)
127 + gnumleap(y+1,1,1); ++y)
128 {
129 j -= k; glo_daynumber += l;
130 }
131 for(m = 1; j >= (unsigned int)(k = (l = months[m]+longyear(y, m))*24*60*60)
132 + gnumleap(y, m+1, 1); ++m)
133 {
134 j -= k; glo_daynumber += l;
135 }
136 for(d = 1; j >= 24UL*60UL*60UL + gnumleap(y, m, d+1); ++d)
137 j -= 24*60*60;
138 glo_daynumber -= 16*365+4-d;
139 nul = gnumleap(y, m, d);
140 glo_timeofday = j-nul;
141
142 // original version
143 // if(mSecOfWeek < 5*60*1000 && glo_timeofday > 23*60*60)
144 // *secOfWeek += 24*60*60;
145 // else if(glo_timeofday < 5*60 && mSecOfWeek > 23*60*60*1000)
146 // *secOfWeek -= 24*60*60;
147
148 // new version
149 if(mSecOfWeek < 4*60*60*1000 && glo_timeofday > 20*60*60)
150 *secOfWeek += 24*60*60;
151 else if(glo_timeofday < 4*60*60 && mSecOfWeek > 20*60*60*1000)
152 *secOfWeek -= 24*60*60;
153
154 *secOfWeek += mSecOfWeek/1000-glo_timeofday;
155 if(fixnumleap)
156 *secOfWeek -= nul;
157 if(*secOfWeek < 0) {*secOfWeek += 24*60*60*7; --*week; }
158 if(*secOfWeek >= 24*60*60*7) {*secOfWeek -= 24*60*60*7; ++*week; }
159}
160
161//
162////////////////////////////////////////////////////////////////////////////
163void expandEnvVar(QString& str) {
164
165 QRegExp rx("(\\$\\{.+\\})");
166
167 if (rx.indexIn(str) != -1) {
168 QStringListIterator it(rx.capturedTexts());
169 if (it.hasNext()) {
170 QString rxStr = it.next();
171 QString envVar = rxStr.mid(2,rxStr.length()-3);
172 str.replace(rxStr, qgetenv(envVar.toAscii()));
173 }
174 }
175
176}
177
178// Strip White Space
179////////////////////////////////////////////////////////////////////////////
180void stripWhiteSpace(string& str) {
181 if (!str.empty()) {
182 string::size_type beg = str.find_first_not_of(" \t\f\n\r\v");
183 string::size_type end = str.find_last_not_of(" \t\f\n\r\v");
184 if (beg > str.max_size())
185 str.erase();
186 else
187 str = str.substr(beg, end-beg+1);
188 }
189}
190
191//
192////////////////////////////////////////////////////////////////////////////
193QDateTime dateAndTimeFromGPSweek(int GPSWeek, double GPSWeeks) {
194
195 static const QDate zeroEpoch(1980, 1, 6);
196
197 QDate date(zeroEpoch);
198 QTime time(0,0,0,0);
199
200 int weekDays = int(GPSWeeks) / 86400;
201 date = date.addDays( GPSWeek * 7 + weekDays );
202 time = time.addMSecs( int( (GPSWeeks - 86400 * weekDays) * 1e3 ) );
203
204 return QDateTime(date,time);
205}
206
207//
208////////////////////////////////////////////////////////////////////////////
209void currentGPSWeeks(int& week, double& sec) {
210
211 QDateTime currDateTimeGPS;
212
213 if ( BNC_CORE->dateAndTimeGPSSet() ) {
214 currDateTimeGPS = BNC_CORE->dateAndTimeGPS();
215 }
216 else {
217 currDateTimeGPS = QDateTime::currentDateTime().toUTC();
218 QDate hlp = currDateTimeGPS.date();
219 currDateTimeGPS = currDateTimeGPS.addSecs(gnumleap(hlp.year(),
220 hlp.month(), hlp.day()));
221 }
222
223 QDate currDateGPS = currDateTimeGPS.date();
224 QTime currTimeGPS = currDateTimeGPS.time();
225
226 week = int( (double(currDateGPS.toJulianDay()) - 2444244.5) / 7 );
227
228 sec = (currDateGPS.dayOfWeek() % 7) * 24.0 * 3600.0 +
229 currTimeGPS.hour() * 3600.0 +
230 currTimeGPS.minute() * 60.0 +
231 currTimeGPS.second() +
232 currTimeGPS.msec() / 1000.0;
233}
234
235//
236////////////////////////////////////////////////////////////////////////////
237QDateTime currentDateAndTimeGPS() {
238 if ( BNC_CORE->dateAndTimeGPSSet() ) {
239 return BNC_CORE->dateAndTimeGPS();
240 }
241 else {
242 int GPSWeek;
243 double GPSWeeks;
244 currentGPSWeeks(GPSWeek, GPSWeeks);
245 return dateAndTimeFromGPSweek(GPSWeek, GPSWeeks);
246 }
247}
248
249//
250////////////////////////////////////////////////////////////////////////////
251QByteArray ggaString(const QByteArray& latitude,
252 const QByteArray& longitude,
253 const QByteArray& height,
254 const QString& ggaType) {
255
256 double lat = strtod(latitude,NULL);
257 double lon = strtod(longitude,NULL);
258 double hei = strtod(height,NULL);
259 QString sentences = "GPGGA,";
260 if (ggaType.contains("GNGGA")) {
261 sentences = "GNGGA,";
262 }
263
264 const char* flagN="N";
265 const char* flagE="E";
266 if (lon >180.) {lon=(lon-360.)*(-1.); flagE="W";}
267 if ((lon < 0.) && (lon >= -180.)) {lon=lon*(-1.); flagE="W";}
268 if (lon < -180.) {lon=(lon+360.); flagE="E";}
269 if (lat < 0.) {lat=lat*(-1.); flagN="S";}
270 QTime ttime(QDateTime::currentDateTime().toUTC().time());
271 int lat_deg = (int)lat;
272 double lat_min=(lat-lat_deg)*60.;
273 int lon_deg = (int)lon;
274 double lon_min=(lon-lon_deg)*60.;
275 int hh = 0 , mm = 0;
276 double ss = 0.0;
277 hh=ttime.hour();
278 mm=ttime.minute();
279 ss=(double)ttime.second()+0.001*ttime.msec();
280 QString gga;
281 gga += sentences;
282 gga += QString("%1%2%3,").arg((int)hh, 2, 10, QLatin1Char('0')).arg((int)mm, 2, 10, QLatin1Char('0')).arg((int)ss, 2, 10, QLatin1Char('0'));
283 gga += QString("%1%2,").arg((int)lat_deg,2, 10, QLatin1Char('0')).arg(lat_min, 7, 'f', 4, QLatin1Char('0'));
284 gga += flagN;
285 gga += QString(",%1%2,").arg((int)lon_deg,3, 10, QLatin1Char('0')).arg(lon_min, 7, 'f', 4, QLatin1Char('0'));
286 gga += flagE + QString(",1,05,1.00");
287 gga += QString(",%1,").arg(hei, 2, 'f', 1);
288 gga += QString("M,10.000,M,,");
289 int xori;
290
291 char XOR = 0;
292 char Buff[gga.size()];
293 strncpy(Buff, gga.toAscii().data(), gga.size());
294 int iLen = strlen(Buff);
295 for (xori = 0; xori < iLen; xori++) {
296 XOR ^= (char)Buff[xori];
297 }
298 gga = "$" + gga + QString("*%1").arg(XOR, 2, 16, QLatin1Char('0'));
299
300 return gga.toAscii();
301}
302
303//
304////////////////////////////////////////////////////////////////////////////
305void RSW_to_XYZ(const ColumnVector& rr, const ColumnVector& vv,
306 const ColumnVector& rsw, ColumnVector& xyz) {
307
308 ColumnVector along = vv / vv.norm_Frobenius();
309 ColumnVector cross = crossproduct(rr, vv); cross /= cross.norm_Frobenius();
310 ColumnVector radial = crossproduct(along, cross);
311
312 Matrix RR(3,3);
313 RR.Column(1) = radial;
314 RR.Column(2) = along;
315 RR.Column(3) = cross;
316
317 xyz = RR * rsw;
318}
319
320// Transformation xyz --> radial, along track, out-of-plane
321////////////////////////////////////////////////////////////////////////////
322void XYZ_to_RSW(const ColumnVector& rr, const ColumnVector& vv,
323 const ColumnVector& xyz, ColumnVector& rsw) {
324
325 ColumnVector along = vv / vv.norm_Frobenius();
326 ColumnVector cross = crossproduct(rr, vv); cross /= cross.norm_Frobenius();
327 ColumnVector radial = crossproduct(along, cross);
328
329 rsw.ReSize(3);
330 rsw(1) = DotProduct(xyz, radial);
331 rsw(2) = DotProduct(xyz, along);
332 rsw(3) = DotProduct(xyz, cross);
333}
334
335// Rectangular Coordinates -> Ellipsoidal Coordinates
336////////////////////////////////////////////////////////////////////////////
337t_irc xyz2ell(const double* XYZ, double* Ell) {
338
339 const double bell = t_CST::aell*(1.0-1.0/t_CST::fInv) ;
340 const double e2 = (t_CST::aell*t_CST::aell-bell*bell)/(t_CST::aell*t_CST::aell) ;
341 const double e2c = (t_CST::aell*t_CST::aell-bell*bell)/(bell*bell) ;
342
343 double nn, ss, zps, hOld, phiOld, theta, sin3, cos3;
344
345 ss = sqrt(XYZ[0]*XYZ[0]+XYZ[1]*XYZ[1]) ;
346 zps = XYZ[2]/ss ;
347 theta = atan( (XYZ[2]*t_CST::aell) / (ss*bell) );
348 sin3 = sin(theta) * sin(theta) * sin(theta);
349 cos3 = cos(theta) * cos(theta) * cos(theta);
350
351 // Closed formula
352 Ell[0] = atan( (XYZ[2] + e2c * bell * sin3) / (ss - e2 * t_CST::aell * cos3) );
353 Ell[1] = atan2(XYZ[1],XYZ[0]) ;
354 nn = t_CST::aell/sqrt(1.0-e2*sin(Ell[0])*sin(Ell[0])) ;
355 Ell[2] = ss / cos(Ell[0]) - nn;
356
357 const int MAXITER = 100;
358 for (int ii = 1; ii <= MAXITER; ii++) {
359 nn = t_CST::aell/sqrt(1.0-e2*sin(Ell[0])*sin(Ell[0])) ;
360 hOld = Ell[2] ;
361 phiOld = Ell[0] ;
362 Ell[2] = ss/cos(Ell[0])-nn ;
363 Ell[0] = atan(zps/(1.0-e2*nn/(nn+Ell[2]))) ;
364 if ( fabs(phiOld-Ell[0]) <= 1.0e-11 && fabs(hOld-Ell[2]) <= 1.0e-5 ) {
365 return success;
366 }
367 }
368
369 return failure;
370}
371
372// Rectangular Coordinates -> North, East, Up Components
373////////////////////////////////////////////////////////////////////////////
374void xyz2neu(const double* Ell, const double* xyz, double* neu) {
375
376 double sinPhi = sin(Ell[0]);
377 double cosPhi = cos(Ell[0]);
378 double sinLam = sin(Ell[1]);
379 double cosLam = cos(Ell[1]);
380
381 neu[0] = - sinPhi*cosLam * xyz[0]
382 - sinPhi*sinLam * xyz[1]
383 + cosPhi * xyz[2];
384
385 neu[1] = - sinLam * xyz[0]
386 + cosLam * xyz[1];
387
388 neu[2] = + cosPhi*cosLam * xyz[0]
389 + cosPhi*sinLam * xyz[1]
390 + sinPhi * xyz[2];
391}
392
393// North, East, Up Components -> Rectangular Coordinates
394////////////////////////////////////////////////////////////////////////////
395void neu2xyz(const double* Ell, const double* neu, double* xyz) {
396
397 double sinPhi = sin(Ell[0]);
398 double cosPhi = cos(Ell[0]);
399 double sinLam = sin(Ell[1]);
400 double cosLam = cos(Ell[1]);
401
402 xyz[0] = - sinPhi*cosLam * neu[0]
403 - sinLam * neu[1]
404 + cosPhi*cosLam * neu[2];
405
406 xyz[1] = - sinPhi*sinLam * neu[0]
407 + cosLam * neu[1]
408 + cosPhi*sinLam * neu[2];
409
410 xyz[2] = + cosPhi * neu[0]
411 + sinPhi * neu[2];
412}
413
414// Rectangular Coordinates -> Geocentric Coordinates
415////////////////////////////////////////////////////////////////////////////
416t_irc xyz2geoc(const double* XYZ, double* Geoc) {
417
418 const double bell = t_CST::aell*(1.0-1.0/t_CST::fInv) ;
419 const double e2 = (t_CST::aell*t_CST::aell-bell*bell)/(t_CST::aell*t_CST::aell) ;
420 double Ell[3];
421 if (xyz2ell(XYZ, Ell) != success) {
422 return failure;
423 }
424 double rho = sqrt(XYZ[0]*XYZ[0]+XYZ[1]*XYZ[1]+XYZ[2]*XYZ[2]);
425 double Rn = t_CST::aell/sqrt(1-e2*pow(sin(Ell[0]),2));
426
427 Geoc[0] = atan((1-e2 * Rn/(Rn + Ell[2])) * tan(Ell[0]));
428 Geoc[1] = Ell[1];
429 Geoc[2] = rho-t_CST::rgeoc;
430
431 return success;
432}
433
434//
435////////////////////////////////////////////////////////////////////////////
436double Frac (double x) {
437 return x-floor(x);
438}
439
440//
441////////////////////////////////////////////////////////////////////////////
442double Modulo (double x, double y) {
443 return y*Frac(x/y);
444}
445
446// Round to nearest integer
447////////////////////////////////////////////////////////////////////////////
448double nint(double val) {
449 return ((val < 0.0) ? -floor(fabs(val)+0.5) : floor(val+0.5));
450}
451
452//
453////////////////////////////////////////////////////////////////////////////
454int factorial(int n) {
455 if (n == 0) {
456 return 1;
457 }
458 else {
459 return (n * factorial(n - 1));
460 }
461}
462
463//
464////////////////////////////////////////////////////////////////////////////
465double associatedLegendreFunction(int n, int m, double t) {
466 double sum = 0.0;
467 int r = (int) floor((n - m) / 2);
468 for (int k = 0; k <= r; k++) {
469 sum += (pow(-1.0, (double)k) * factorial(2*n - 2*k)
470 / (factorial(k) * factorial(n-k) * factorial(n-m-2*k))
471 * pow(t, (double)n-m-2*k));
472 }
473 double fac = pow(2.0,(double) -n) * pow((1 - t*t), (double)m/2);
474 return sum *= fac;
475}
476
477
478// Jacobian XYZ --> NEU
479////////////////////////////////////////////////////////////////////////////
480void jacobiXYZ_NEU(const double* Ell, Matrix& jacobi) {
481
482 Tracer tracer("jacobiXYZ_NEU");
483
484 double sinPhi = sin(Ell[0]);
485 double cosPhi = cos(Ell[0]);
486 double sinLam = sin(Ell[1]);
487 double cosLam = cos(Ell[1]);
488
489 jacobi(1,1) = - sinPhi * cosLam;
490 jacobi(1,2) = - sinPhi * sinLam;
491 jacobi(1,3) = cosPhi;
492
493 jacobi(2,1) = - sinLam;
494 jacobi(2,2) = cosLam;
495 jacobi(2,3) = 0.0;
496
497 jacobi(3,1) = cosPhi * cosLam;
498 jacobi(3,2) = cosPhi * sinLam;
499 jacobi(3,3) = sinPhi;
500}
501
502// Jacobian Ell --> XYZ
503////////////////////////////////////////////////////////////////////////////
504void jacobiEll_XYZ(const double* Ell, Matrix& jacobi) {
505
506 Tracer tracer("jacobiEll_XYZ");
507
508 double sinPhi = sin(Ell[0]);
509 double cosPhi = cos(Ell[0]);
510 double sinLam = sin(Ell[1]);
511 double cosLam = cos(Ell[1]);
512 double hh = Ell[2];
513
514 double bell = t_CST::aell*(1.0-1.0/t_CST::fInv);
515 double e2 = (t_CST::aell*t_CST::aell-bell*bell)/(t_CST::aell*t_CST::aell) ;
516 double nn = t_CST::aell/sqrt(1.0-e2*sinPhi*sinPhi) ;
517
518 jacobi(1,1) = -(nn+hh) * sinPhi * cosLam;
519 jacobi(1,2) = -(nn+hh) * cosPhi * sinLam;
520 jacobi(1,3) = cosPhi * cosLam;
521
522 jacobi(2,1) = -(nn+hh) * sinPhi * sinLam;
523 jacobi(2,2) = (nn+hh) * cosPhi * cosLam;
524 jacobi(2,3) = cosPhi * sinLam;
525
526 jacobi(3,1) = (nn*(1.0-e2)+hh) * cosPhi;
527 jacobi(3,2) = 0.0;
528 jacobi(3,3) = sinPhi;
529}
530
531// Covariance Matrix in NEU
532////////////////////////////////////////////////////////////////////////////
533void covariXYZ_NEU(const SymmetricMatrix& QQxyz, const double* Ell,
534 SymmetricMatrix& Qneu) {
535
536 Tracer tracer("covariXYZ_NEU");
537
538 Matrix CC(3,3);
539 jacobiXYZ_NEU(Ell, CC);
540 Qneu << CC * QQxyz * CC.t();
541}
542
543// Covariance Matrix in XYZ
544////////////////////////////////////////////////////////////////////////////
545void covariNEU_XYZ(const SymmetricMatrix& QQneu, const double* Ell,
546 SymmetricMatrix& Qxyz) {
547
548 Tracer tracer("covariNEU_XYZ");
549
550 Matrix CC(3,3);
551 jacobiXYZ_NEU(Ell, CC);
552 Qxyz << CC.t() * QQneu * CC;
553}
554
555// Fourth order Runge-Kutta numerical integrator for ODEs
556////////////////////////////////////////////////////////////////////////////
557ColumnVector rungeKutta4(
558 double xi, // the initial x-value
559 const ColumnVector& yi, // vector of the initial y-values
560 double dx, // the step size for the integration
561 double* acc, // aditional acceleration
562 ColumnVector (*der)(double x, const ColumnVector& y, double* acc)
563 // A pointer to a function that computes the
564 // derivative of a function at a point (x,y)
565 ) {
566
567 ColumnVector k1 = der(xi , yi , acc) * dx;
568 ColumnVector k2 = der(xi+dx/2.0, yi+k1/2.0, acc) * dx;
569 ColumnVector k3 = der(xi+dx/2.0, yi+k2/2.0, acc) * dx;
570 ColumnVector k4 = der(xi+dx , yi+k3 , acc) * dx;
571
572 ColumnVector yf = yi + k1/6.0 + k2/3.0 + k3/3.0 + k4/6.0;
573
574 return yf;
575}
576//
577////////////////////////////////////////////////////////////////////////////
578double djul(long jj, long mm, double tt) {
579 long ii, kk;
580 double djul ;
581 if( mm <= 2 ) {
582 jj = jj - 1;
583 mm = mm + 12;
584 }
585 ii = jj/100;
586 kk = 2 - ii + ii/4;
587 djul = (365.25*jj - fmod( 365.25*jj, 1.0 )) - 679006.0;
588 djul = djul + floor( 30.6001*(mm + 1) ) + tt + kk;
589 return djul;
590}
591
592//
593////////////////////////////////////////////////////////////////////////////
594double gpjd(double second, int nweek) {
595 double deltat;
596 deltat = nweek*7.0 + second/86400.0 ;
597 return( 44244.0 + deltat) ;
598}
599
600//
601////////////////////////////////////////////////////////////////////////////
602void jdgp(double tjul, double & second, long & nweek) {
603 double deltat;
604 deltat = tjul - 44244.0 ;
605 nweek = (long) floor(deltat/7.0);
606 second = (deltat - (nweek)*7.0)*86400.0;
607}
608
609//
610////////////////////////////////////////////////////////////////////////////
611void jmt(double djul, long& jj, long& mm, double& dd) {
612 long ih, ih1, ih2 ;
613 double t1, t2, t3, t4;
614 t1 = 1.0 + djul - fmod( djul, 1.0 ) + 2400000.0;
615 t4 = fmod( djul, 1.0 );
616 ih = long( (t1 - 1867216.25)/36524.25 );
617 t2 = t1 + 1 + ih - ih/4;
618 t3 = t2 - 1720995.0;
619 ih1 = long( (t3 - 122.1)/365.25 );
620 t1 = 365.25*ih1 - fmod( 365.25*ih1, 1.0 );
621 ih2 = long( (t3 - t1)/30.6001 );
622 dd = t3 - t1 - (int)( 30.6001*ih2 ) + t4;
623 mm = ih2 - 1;
624 if ( ih2 > 13 ) mm = ih2 - 13;
625 jj = ih1;
626 if ( mm <= 2 ) jj = jj + 1;
627}
628
629//
630////////////////////////////////////////////////////////////////////////////
631void GPSweekFromDateAndTime(const QDateTime& dateTime,
632 int& GPSWeek, double& GPSWeeks) {
633
634 static const QDateTime zeroEpoch(QDate(1980, 1, 6),QTime(),Qt::UTC);
635
636 GPSWeek = zeroEpoch.daysTo(dateTime) / 7;
637
638 int weekDay = dateTime.date().dayOfWeek() + 1; // Qt: Monday = 1
639 if (weekDay > 7) weekDay = 1;
640
641 GPSWeeks = (weekDay - 1) * 86400.0
642 - dateTime.time().msecsTo(QTime()) / 1e3;
643}
644
645//
646////////////////////////////////////////////////////////////////////////////
647void GPSweekFromYMDhms(int year, int month, int day, int hour, int min,
648 double sec, int& GPSWeek, double& GPSWeeks) {
649
650 double mjd = djul(year, month, day);
651
652 long GPSWeek_long;
653 jdgp(mjd, GPSWeeks, GPSWeek_long);
654 GPSWeek = GPSWeek_long;
655 GPSWeeks += hour * 3600.0 + min * 60.0 + sec;
656}
657
658//
659////////////////////////////////////////////////////////////////////////////
660void mjdFromDateAndTime(const QDateTime& dateTime, int& mjd, double& dayfrac) {
661
662 static const QDate zeroDate(1858, 11, 17);
663
664 mjd = zeroDate.daysTo(dateTime.date());
665
666 dayfrac = (dateTime.time().hour() +
667 (dateTime.time().minute() +
668 (dateTime.time().second() +
669 dateTime.time().msec() / 1000.0) / 60.0) / 60.0) / 24.0;
670}
671
672//
673////////////////////////////////////////////////////////////////////////////
674bool findInVector(const vector<QString>& vv, const QString& str) {
675 std::vector<QString>::const_iterator it;
676 for (it = vv.begin(); it != vv.end(); ++it) {
677 if ( (*it) == str) {
678 return true;
679 }
680 }
681 return false;
682}
683
684//
685////////////////////////////////////////////////////////////////////////////
686int readInt(const QString& str, int pos, int len, int& value) {
687 bool ok;
688 value = str.mid(pos, len).toInt(&ok);
689 return ok ? 0 : 1;
690}
691
692//
693////////////////////////////////////////////////////////////////////////////
694int readDbl(const QString& str, int pos, int len, double& value) {
695 QString hlp = str.mid(pos, len);
696 for (int ii = 0; ii < hlp.length(); ii++) {
697 if (hlp[ii]=='D' || hlp[ii]=='d' || hlp[ii] == 'E') {
698 hlp[ii]='e';
699 }
700 }
701 bool ok;
702 value = hlp.toDouble(&ok);
703 return ok ? 0 : 1;
704}
705
706// Topocentrical Distance and Elevation
707////////////////////////////////////////////////////////////////////////////
708void topos(double xRec, double yRec, double zRec,
709 double xSat, double ySat, double zSat,
710 double& rho, double& eleSat, double& azSat) {
711
712 double dx[3];
713 dx[0] = xSat-xRec;
714 dx[1] = ySat-yRec;
715 dx[2] = zSat-zRec;
716
717 rho = sqrt( dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2] );
718
719 double xyzRec[3];
720 xyzRec[0] = xRec;
721 xyzRec[1] = yRec;
722 xyzRec[2] = zRec;
723
724 double Ell[3];
725 double neu[3];
726 xyz2ell(xyzRec, Ell);
727 xyz2neu(Ell, dx, neu);
728
729 eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
730 if (neu[2] < 0) {
731 eleSat *= -1.0;
732 }
733
734 azSat = atan2(neu[1], neu[0]);
735}
736
737// Degrees -> degrees, minutes, seconds
738////////////////////////////////////////////////////////////////////////////
739void deg2DMS(double decDeg, int& deg, int& min, double& sec) {
740 int sgn = (decDeg < 0.0 ? -1 : 1);
741 deg = static_cast<int>(decDeg);
742 min = sgn * static_cast<int>((decDeg - deg)*60);
743 sec = (sgn* (decDeg - deg) - min/60.0) * 3600.0;
744}
745
746//
747////////////////////////////////////////////////////////////////////////////
748QString fortranFormat(double value, int width, int prec) {
749 int expo = value == 0.0 ? 0 : int(log10(fabs(value)));
750 double mant = value == 0.0 ? 0 : value / pow(10.0, double(expo));
751 if (fabs(mant) >= 1.0) {
752 mant /= 10.0;
753 expo += 1;
754 }
755 if (expo >= 0) {
756 return QString("%1e+%2").arg(mant, width-4, 'f', prec).arg(expo, 2, 10, QChar('0'));
757 }
758 else {
759 return QString("%1e-%2").arg(mant, width-4, 'f', prec).arg(-expo, 2, 10, QChar('0'));
760 }
761}
762
763//
764//////////////////////////////////////////////////////////////////////////////
765void kalman(const Matrix& AA, const ColumnVector& ll, const DiagonalMatrix& PP,
766 SymmetricMatrix& QQ, ColumnVector& xx) {
767
768 Tracer tracer("kalman");
769
770 int nPar = AA.Ncols();
771 int nObs = AA.Nrows();
772 UpperTriangularMatrix SS = Cholesky(QQ).t();
773
774 Matrix SA = SS*AA.t();
775 Matrix SRF(nObs+nPar, nObs+nPar); SRF = 0;
776 for (int ii = 1; ii <= nObs; ++ii) {
777 SRF(ii,ii) = 1.0 / sqrt(PP(ii,ii));
778 }
779
780 SRF.SubMatrix (nObs+1, nObs+nPar, 1, nObs) = SA;
781 SRF.SymSubMatrix(nObs+1, nObs+nPar) = SS;
782
783 UpperTriangularMatrix UU;
784 QRZ(SRF, UU);
785
786 SS = UU.SymSubMatrix(nObs+1, nObs+nPar);
787 UpperTriangularMatrix SH_rt = UU.SymSubMatrix(1, nObs);
788 Matrix YY = UU.SubMatrix(1, nObs, nObs+1, nObs+nPar);
789
790 UpperTriangularMatrix SHi = SH_rt.i();
791
792 Matrix KT = SHi * YY;
793 SymmetricMatrix Hi; Hi << SHi * SHi.t();
794
795 xx += KT.t() * (ll - AA * xx);
796 QQ << (SS.t() * SS);
797}
798
799double accuracyFromIndex(int index, t_eph::e_type type) {
800
801 if (type == t_eph::GPS || type == t_eph::BDS || type == t_eph::SBAS
802 || type == t_eph::QZSS) {
803
804 if ((index >= 0) && (index <= 6)) {
805 if (index == 3) {
806 return ceil(10.0 * pow(2.0, (double(index) / 2.0) + 1.0)) / 10.0;
807 }
808 else {
809 return floor(10.0 * pow(2.0, (double(index) / 2.0) + 1.0)) / 10.0;
810 }
811 }
812 else if ((index > 6) && (index <= 15)) {
813 return (10.0 * pow(2.0, (double(index) - 2.0))) / 10.0;
814 }
815 else {
816 return 8192.0;
817 }
818 }
819
820 if (type == t_eph::Galileo) {
821
822 if ((index >= 0) && (index <= 49)) {
823 return (double(index) / 100.0);
824 }
825 else if ((index > 49) && (index <= 74)) {
826 return (50.0 + (double(index) - 50.0) * 2.0) / 100.0;
827 }
828 else if ((index > 74) && (index <= 99)) {
829 return 1.0 + (double(index) - 75.0) * 0.04;
830 }
831 else if ((index > 99) && (index <= 125)) {
832 return 2.0 + (double(index) - 100.0) * 0.16;
833 }
834 else {
835 return -1.0;
836 }
837 }
838
839 return double(index);
840}
841
842int indexFromAccuracy(double accuracy, t_eph::e_type type) {
843
844 if (type == t_eph::GPS || type == t_eph::BDS || type == t_eph::SBAS
845 || type == t_eph::QZSS) {
846
847 if (accuracy <= 2.40) {
848 return 0;
849 }
850 else if (accuracy <= 3.40) {
851 return 1;
852 }
853 else if (accuracy <= 4.85) {
854 return 2;
855 }
856 else if (accuracy <= 6.85) {
857 return 3;
858 }
859 else if (accuracy <= 9.65) {
860 return 4;
861 }
862 else if (accuracy <= 13.65) {
863 return 5;
864 }
865 else if (accuracy <= 24.00) {
866 return 6;
867 }
868 else if (accuracy <= 48.00) {
869 return 7;
870 }
871 else if (accuracy <= 96.00) {
872 return 8;
873 }
874 else if (accuracy <= 192.00) {
875 return 9;
876 }
877 else if (accuracy <= 384.00) {
878 return 10;
879 }
880 else if (accuracy <= 768.00) {
881 return 11;
882 }
883 else if (accuracy <= 1536.00) {
884 return 12;
885 }
886 else if (accuracy <= 3072.00) {
887 return 13;
888 }
889 else if (accuracy <= 6144.00) {
890 return 14;
891 }
892 else {
893 return 15;
894 }
895 }
896
897 if (type == t_eph::Galileo) {
898
899 if (accuracy <= 0.49) {
900 return int(ceil(accuracy * 100.0));
901 }
902 else if (accuracy <= 0.98) {
903 return int(50.0 + (((accuracy * 100.0) - 50) / 2.0));
904 }
905 else if (accuracy <= 2.0) {
906 return int(75.0 + ((accuracy - 1.0) / 0.04));
907 }
908 else if (accuracy <= 6.0) {
909 return int(100.0 + ((accuracy - 2.0) / 0.16));
910 }
911 else {
912 return 255;
913 }
914 }
915
916 return (type == t_eph::Galileo) ? 255 : 15;
917}
918
919// Returns CRC24
920////////////////////////////////////////////////////////////////////////////
921unsigned long CRC24(long size, const unsigned char *buf) {
922 unsigned long crc = 0;
923 int ii;
924 while (size--) {
925 crc ^= (*buf++) << (16);
926 for(ii = 0; ii < 8; ii++) {
927 crc <<= 1;
928 if (crc & 0x1000000) {
929 crc ^= 0x01864cfb;
930 }
931 }
932 }
933 return crc;
934}
935
Note: See TracBrowser for help on using the repository browser.