source: ntrip/branches/BNC_2.12/src/PPP_SSR_I/pppFilter.cpp@ 9482

Last change on this file since 9482 was 9482, checked in by stuerze, 3 years ago

minor changes

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 42.6 KB
RevLine 
[7235]1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: t_pppParam, t_pppFilter
30 *
31 * Purpose: Model for PPP
32 *
33 * Author: L. Mervart
34 *
35 * Created: 01-Dec-2009
36 *
[7287]37 * Changes:
[7235]38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iomanip>
42#include <cmath>
43#include <sstream>
44#include <newmatio.h>
45#include <newmatap.h>
46
47#include "pppFilter.h"
48#include "pppClient.h"
49#include "bncutils.h"
50#include "bncantex.h"
51#include "pppOptions.h"
52#include "pppModel.h"
53
54using namespace BNC_PPP;
55using namespace std;
56
[7953]57const double GLONASS_WEIGHT_FACTOR = 5.0;
[9471]58const double BDS_WEIGHT_FACTOR = 2.0; // 5.0;
[7235]59
60#define LOG (_pppClient->log())
61#define OPT (_pppClient->opt())
62
63// Constructor
64////////////////////////////////////////////////////////////////////////////
[7287]65t_pppParam::t_pppParam(t_pppParam::parType typeIn, int indexIn,
[7235]66 const QString& prnIn) {
67 type = typeIn;
68 index = indexIn;
69 prn = prnIn;
70 index_old = 0;
71 xx = 0.0;
72 numEpo = 0;
73}
74
75// Destructor
76////////////////////////////////////////////////////////////////////////////
77t_pppParam::~t_pppParam() {
78}
79
80// Partial
81////////////////////////////////////////////////////////////////////////////
82double t_pppParam::partial(t_satData* satData, bool phase) {
83
84 Tracer tracer("t_pppParam::partial");
85
86 // Coordinates
87 // -----------
88 if (type == CRD_X) {
[7287]89 return (xx - satData->xx(1)) / satData->rho;
[7235]90 }
91 else if (type == CRD_Y) {
[7287]92 return (xx - satData->xx(2)) / satData->rho;
[7235]93 }
94 else if (type == CRD_Z) {
[7287]95 return (xx - satData->xx(3)) / satData->rho;
[7235]96 }
97
98 // Receiver Clocks
99 // ---------------
100 else if (type == RECCLK) {
101 return 1.0;
102 }
103
104 // Troposphere
105 // -----------
106 else if (type == TROPO) {
[7287]107 return 1.0 / sin(satData->eleSat);
[7235]108 }
109
110 // Glonass Offset
111 // --------------
112 else if (type == GLONASS_OFFSET) {
113 if (satData->prn[0] == 'R') {
114 return 1.0;
115 }
116 else {
117 return 0.0;
118 }
119 }
120
121 // Galileo Offset
122 // --------------
123 else if (type == GALILEO_OFFSET) {
124 if (satData->prn[0] == 'E') {
125 return 1.0;
126 }
127 else {
128 return 0.0;
129 }
130 }
131
132 // BDS Offset
133 // ----------
134 else if (type == BDS_OFFSET) {
135 if (satData->prn[0] == 'C') {
136 return 1.0;
137 }
138 else {
139 return 0.0;
140 }
141 }
142
143 // Ambiguities
144 // -----------
145 else if (type == AMB_L3) {
146 if (phase && satData->prn == prn) {
147 return 1.0;
148 }
149 else {
150 return 0.0;
151 }
152 }
153
154 // Default return
155 // --------------
156 return 0.0;
157}
158
159// Constructor
160////////////////////////////////////////////////////////////////////////////
161t_pppFilter::t_pppFilter(t_pppClient* pppClient) {
162
163 _pppClient = pppClient;
164 _tides = new t_tides();
165
166 // Antenna Name, ANTEX File
167 // ------------------------
168 _antex = 0;
169 if (!OPT->_antexFileName.empty()) {
170 _antex = new bncAntex(OPT->_antexFileName.c_str());
171 }
172
173 // Bancroft Coordinates
174 // --------------------
175 _xcBanc.ReSize(4); _xcBanc = 0.0;
176 _ellBanc.ReSize(3); _ellBanc = 0.0;
177
178 // Save copy of data (used in outlier detection)
179 // ---------------------------------------------
180 _epoData_sav = new t_epoData();
181
182 // Some statistics
183 // ---------------
184 _neu.ReSize(3); _neu = 0.0;
185 _numSat = 0;
[7933]186 _hDop = 0.0;
[7235]187}
188
189// Destructor
190////////////////////////////////////////////////////////////////////////////
191t_pppFilter::~t_pppFilter() {
192 delete _tides;
193 delete _antex;
194 for (int iPar = 1; iPar <= _params.size(); iPar++) {
195 delete _params[iPar-1];
196 }
197 for (int iPar = 1; iPar <= _params_sav.size(); iPar++) {
198 delete _params_sav[iPar-1];
199 }
200 delete _epoData_sav;
201}
202
203// Reset Parameters and Variance-Covariance Matrix
204////////////////////////////////////////////////////////////////////////////
205void t_pppFilter::reset() {
206
207 Tracer tracer("t_pppFilter::reset");
208
209 double lastTrp = 0.0;
210 for (int ii = 0; ii < _params.size(); ii++) {
211 t_pppParam* pp = _params[ii];
212 if (pp->type == t_pppParam::TROPO) {
213 lastTrp = pp->xx;
214 }
215 delete pp;
216 }
217 _params.clear();
218
219 int nextPar = 0;
220 _params.push_back(new t_pppParam(t_pppParam::CRD_X, ++nextPar, ""));
221 _params.push_back(new t_pppParam(t_pppParam::CRD_Y, ++nextPar, ""));
222 _params.push_back(new t_pppParam(t_pppParam::CRD_Z, ++nextPar, ""));
223 _params.push_back(new t_pppParam(t_pppParam::RECCLK, ++nextPar, ""));
224 if (OPT->estTrp()) {
225 _params.push_back(new t_pppParam(t_pppParam::TROPO, ++nextPar, ""));
226 }
227 if (OPT->useSystem('R')) {
228 _params.push_back(new t_pppParam(t_pppParam::GLONASS_OFFSET, ++nextPar, ""));
229 }
230 if (OPT->useSystem('E')) {
231 _params.push_back(new t_pppParam(t_pppParam::GALILEO_OFFSET, ++nextPar, ""));
232 }
233 if (OPT->useSystem('C')) {
234 _params.push_back(new t_pppParam(t_pppParam::BDS_OFFSET, ++nextPar, ""));
235 }
236
[7287]237 _QQ.ReSize(_params.size());
[7235]238 _QQ = 0.0;
239 for (int iPar = 1; iPar <= _params.size(); iPar++) {
240 t_pppParam* pp = _params[iPar-1];
241 pp->xx = 0.0;
242 if (pp->isCrd()) {
[7287]243 _QQ(iPar,iPar) = OPT->_aprSigCrd(1) * OPT->_aprSigCrd(1);
[7235]244 }
245 else if (pp->type == t_pppParam::RECCLK) {
[7287]246 _QQ(iPar,iPar) = OPT->_noiseClk * OPT->_noiseClk;
[7235]247 }
248 else if (pp->type == t_pppParam::TROPO) {
[7287]249 _QQ(iPar,iPar) = OPT->_aprSigTrp * OPT->_aprSigTrp;
[7235]250 pp->xx = lastTrp;
251 }
252 else if (pp->type == t_pppParam::GLONASS_OFFSET) {
253 _QQ(iPar,iPar) = 1000.0 * 1000.0;
254 }
255 else if (pp->type == t_pppParam::GALILEO_OFFSET) {
256 _QQ(iPar,iPar) = 1000.0 * 1000.0;
257 }
258 else if (pp->type == t_pppParam::BDS_OFFSET) {
259 _QQ(iPar,iPar) = 1000.0 * 1000.0;
260 }
261 }
262}
263
264// Bancroft Solution
265////////////////////////////////////////////////////////////////////////////
266t_irc t_pppFilter::cmpBancroft(t_epoData* epoData) {
267
268 Tracer tracer("t_pppFilter::cmpBancroft");
269
270 if (int(epoData->sizeSys('G')) < OPT->_minObs) {
271 LOG << "t_pppFilter::cmpBancroft: not enough data\n";
272 return failure;
273 }
274
275 Matrix BB(epoData->sizeSys('G'), 4);
276
277 QMapIterator<QString, t_satData*> it(epoData->satData);
278 int iObsBanc = 0;
279 while (it.hasNext()) {
280 it.next();
281 t_satData* satData = it.value();
282 if (satData->system() == 'G') {
283 ++iObsBanc;
284 QString prn = it.key();
285 BB(iObsBanc, 1) = satData->xx(1);
286 BB(iObsBanc, 2) = satData->xx(2);
287 BB(iObsBanc, 3) = satData->xx(3);
288 BB(iObsBanc, 4) = satData->P3 + satData->clk;
289 }
290 }
291
292 bancroft(BB, _xcBanc);
293
[8452]294 if (std::isnan(_xcBanc(1)) ||
295 std::isnan(_xcBanc(2)) ||
296 std::isnan(_xcBanc(3))) {
[7852]297 return failure;
298 }
299
[7235]300 // Ellipsoidal Coordinates
301 // ------------------------
302 xyz2ell(_xcBanc.data(), _ellBanc.data());
303
304 // Compute Satellite Elevations
305 // ----------------------------
306 QMutableMapIterator<QString, t_satData*> im(epoData->satData);
307 while (im.hasNext()) {
308 im.next();
309 t_satData* satData = im.value();
310 cmpEle(satData);
311 if (satData->eleSat < OPT->_minEle) {
312 delete satData;
313 im.remove();
314 }
315 }
316
317 return success;
318}
319
320// Computed Value
321////////////////////////////////////////////////////////////////////////////
322double t_pppFilter::cmpValue(t_satData* satData, bool phase) {
323
324 Tracer tracer("t_pppFilter::cmpValue");
325
326 ColumnVector xRec(3);
327 xRec(1) = x();
328 xRec(2) = y();
329 xRec(3) = z();
330
331 double rho0 = (satData->xx - xRec).norm_Frobenius();
[7287]332 double dPhi = t_CST::omega * rho0 / t_CST::c;
[7235]333
[7287]334 xRec(1) = x() * cos(dPhi) - y() * sin(dPhi);
335 xRec(2) = y() * cos(dPhi) + x() * sin(dPhi);
[7235]336 xRec(3) = z();
337
338 xRec += _tides->displacement(_time, xRec);
339
340 satData->rho = (satData->xx - xRec).norm_Frobenius();
341
[7287]342 double tropDelay = delay_saast(satData->eleSat) +
[7235]343 trp() / sin(satData->eleSat);
344
345 double wind = 0.0;
346 if (phase) {
347 wind = windUp(satData->prn, satData->xx, xRec) * satData->lambda3;
348 }
349
350 double offset = 0.0;
[9471]351
352 t_frequency::type frqA;
353 t_frequency::type frqB;
354
[7235]355 if (satData->prn[0] == 'R') {
356 offset = Glonass_offset();
357 frqA = t_frequency::R1;
358 frqB = t_frequency::R2;
359 }
360 else if (satData->prn[0] == 'E') {
361 offset = Galileo_offset();
[9043]362 frqA = t_frequency::E1;
363 frqB = t_frequency::E5;
[7235]364 }
365 else if (satData->prn[0] == 'C') {
366 offset = Bds_offset();
[9043]367 frqA = t_frequency::C2;
[9471]368 frqB = t_frequency::C6;
[7235]369 }
[9471]370 else {
371 frqA = t_frequency::G1;
372 frqB = t_frequency::G2;
373 }
374
[7235]375 double phaseCenter = 0.0;
[9471]376
[7287]377 if (_antex) {
[9474]378
379 // Satellite correction
380 // ---------------------
381 double elTx,azTx;
382
383 // LOS unit vector satellite --> receiver
384 ColumnVector rho = xRec - satData->xx;
385 rho /= rho.norm_Frobenius();
386
387 // Sun unit vector
[9482]388 ColumnVector xSun = t_astro::Sun(satData->tt.mjddec());
[9474]389 xSun /= xSun.norm_Frobenius();
390
391 // Satellite unit vectors sz, sy, sx
392 ColumnVector sz = -satData->xx / satData->xx.norm_Frobenius();
393 ColumnVector sy = crossproduct(sz, xSun);
394 ColumnVector sx = crossproduct(sy, sz);
395
396 sx /= sx.norm_Frobenius();
397 sy /= sy.norm_Frobenius();
398
399 // LOS vector in satellite frame
400 ColumnVector u(3);
401 u(1) = dotproduct(sx, rho);
402 u(2) = dotproduct(sy, rho);
403 u(3) = dotproduct(sz, rho);
404
405 // Azimuth and elevation in satellite antenna frame
406 elTx = atan2(u(3),sqrt(pow(u(2),2)+pow(u(1),2)));
407 azTx = atan2(u(2),u(1));
408
[7235]409 bool found;
[9474]410 if (OPT->_isAPC) {
411 phaseCenter += satData->lkB * _antex->satCorr(satData->prn, frqA, elTx, azTx, found);
412 }
413 else {
414 phaseCenter += satData->lkA * _antex->satCorr(satData->prn, frqA, elTx, azTx, found);
415 }
[7235]416 if (!found) {
[9474]417 LOG << "ANTEX: antenna >" << satData->prn.mid(0,3).toStdString() << " " << frqA << "< not found\n";
[7235]418 }
[9474]419
420 phaseCenter += satData->lkB * _antex->satCorr(satData->prn, frqB, elTx, azTx, found);
421 if (!found) {
422 LOG << "ANTEX: antenna >" << satData->prn.mid(0,3).toStdString() << " " << frqB << "< not found\n";
423 }
424
425 /*
426 LOG << "ANTEX: " << satData->prn.mid(0,3).toStdString() << " "
427 << fixed
428 << setprecision(3)
429 << " xyz "
430 << setw(7) << u(1)
431 << setw(7) << u(2)
432 << setw(7) << u(3)
433 << setprecision(1)
434 << " elTx " << setw(5) << elTx * 180.0/M_PI
435 << " azTx " << setw(7) << azTx * 180.0/M_PI
436 << " elRx " << setw(5) << satData->eleSat * 180.0/M_PI
437 << setprecision(3)
438 << " pcc " << setw(6) << phaseCenter
439 << endl;
440 */
441
442 // Receiver correction
443 // -------------------
444
445 phaseCenter += satData->lkA * _antex->rcvCorr(OPT->_antNameRover, frqA,
446 satData->eleSat, satData->azSat, found);
447 if (!found) {
448 phaseCenter += satData->lkA * _antex->rcvCorr(OPT->_antNameRover, t_frequency::G1,
449 satData->eleSat, satData->azSat, found);
450 }
451 if (!found) {
452 LOG << "ANTEX: antenna >" << OPT->_antNameRover << " " << frqA << "< not found\n";
453 }
454
455 phaseCenter += satData->lkB * _antex->rcvCorr(OPT->_antNameRover, frqB,
456 satData->eleSat, satData->azSat, found);
457 if (!found) {
458 phaseCenter += satData->lkB * _antex->rcvCorr(OPT->_antNameRover, t_frequency::G2,
459 satData->eleSat, satData->azSat, found);
460 }
461 if (!found) {
462 LOG << "ANTEX: antenna >" << OPT->_antNameRover << " " << frqB << "< not found\n";
463 }
[7235]464 }
465
466 double antennaOffset = 0.0;
467 double cosa = cos(satData->azSat);
468 double sina = sin(satData->azSat);
469 double cose = cos(satData->eleSat);
470 double sine = sin(satData->eleSat);
[7287]471 antennaOffset = -OPT->_neuEccRover(1) * cosa*cose
472 -OPT->_neuEccRover(2) * sina*cose
[7235]473 -OPT->_neuEccRover(3) * sine;
474
[7287]475 return satData->rho + phaseCenter + antennaOffset + clk()
[7235]476 + offset - satData->clk + tropDelay + wind;
477}
478
479// Tropospheric Model (Saastamoinen)
480////////////////////////////////////////////////////////////////////////////
481double t_pppFilter::delay_saast(double Ele) {
482
483 Tracer tracer("t_pppFilter::delay_saast");
484
[7287]485 double xyz[3];
[7235]486 xyz[0] = x();
487 xyz[1] = y();
488 xyz[2] = z();
[7287]489 double ell[3];
[7235]490 xyz2ell(xyz, ell);
491 double height = ell[2];
[9281]492 // Prevent pp from causing segmentation fault (Loukis)
493 if (height > 40000.0 ) {
494 return 0.000000001;
495 }
[7235]496
497 double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225);
498 double TT = 18.0 - height * 0.0065 + 273.15;
499 double hh = 50.0 * exp(-6.396e-4 * height);
500 double ee = hh / 100.0 * exp(-37.2465 + 0.213166*TT - 0.000256908*TT*TT);
501
502 double h_km = height / 1000.0;
[7287]503
[7235]504 if (h_km < 0.0) h_km = 0.0;
505 if (h_km > 5.0) h_km = 5.0;
506 int ii = int(h_km + 1);
507 double href = ii - 1;
[7287]508
509 double bCor[6];
[7235]510 bCor[0] = 1.156;
511 bCor[1] = 1.006;
512 bCor[2] = 0.874;
513 bCor[3] = 0.757;
514 bCor[4] = 0.654;
515 bCor[5] = 0.563;
[7287]516
[7235]517 double BB = bCor[ii-1] + (bCor[ii]-bCor[ii-1]) * (h_km - href);
[7287]518
[7235]519 double zen = M_PI/2.0 - Ele;
520
521 return (0.002277/cos(zen)) * (pp + ((1255.0/TT)+0.05)*ee - BB*(tan(zen)*tan(zen)));
522}
523
524// Prediction Step of the Filter
525////////////////////////////////////////////////////////////////////////////
526void t_pppFilter::predict(int iPhase, t_epoData* epoData) {
527
528 Tracer tracer("t_pppFilter::predict");
529
530 if (iPhase == 0) {
531
532 const double maxSolGap = 60.0;
533
534 bool firstCrd = false;
535 if (!_lastTimeOK.valid() || (maxSolGap > 0.0 && _time - _lastTimeOK > maxSolGap)) {
536 firstCrd = true;
537 _startTime = epoData->tt;
538 reset();
539 }
[7287]540
[7235]541 // Use different white noise for Quick-Start mode
542 // ----------------------------------------------
543 double sigCrdP_used = OPT->_noiseCrd(1);
544 if ( OPT->_seedingTime > 0.0 && OPT->_seedingTime > (epoData->tt - _startTime) ) {
545 sigCrdP_used = 0.0;
546 }
547
548 // Predict Parameter values, add white noise
549 // -----------------------------------------
550 for (int iPar = 1; iPar <= _params.size(); iPar++) {
551 t_pppParam* pp = _params[iPar-1];
[7287]552
[7235]553 // Coordinates
554 // -----------
555 if (pp->type == t_pppParam::CRD_X) {
556 if (firstCrd) {
557 if (OPT->xyzAprRoverSet()) {
558 pp->xx = OPT->_xyzAprRover[0];
559 }
560 else {
561 pp->xx = _xcBanc(1);
562 }
563 }
564 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
565 }
566 else if (pp->type == t_pppParam::CRD_Y) {
567 if (firstCrd) {
568 if (OPT->xyzAprRoverSet()) {
569 pp->xx = OPT->_xyzAprRover[1];
570 }
571 else {
572 pp->xx = _xcBanc(2);
573 }
574 }
575 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
576 }
577 else if (pp->type == t_pppParam::CRD_Z) {
578 if (firstCrd) {
579 if (OPT->xyzAprRoverSet()) {
580 pp->xx = OPT->_xyzAprRover[2];
581 }
582 else {
583 pp->xx = _xcBanc(3);
584 }
585 }
586 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
[7287]587 }
588
[7235]589 // Receiver Clocks
590 // ---------------
591 else if (pp->type == t_pppParam::RECCLK) {
592 pp->xx = _xcBanc(4);
593 for (int jj = 1; jj <= _params.size(); jj++) {
594 _QQ(iPar, jj) = 0.0;
595 }
596 _QQ(iPar,iPar) = OPT->_noiseClk * OPT->_noiseClk;
597 }
[7287]598
[7235]599 // Tropospheric Delay
600 // ------------------
601 else if (pp->type == t_pppParam::TROPO) {
602 _QQ(iPar,iPar) += OPT->_noiseTrp * OPT->_noiseTrp;
603 }
[7287]604
[7235]605 // Glonass Offset
606 // --------------
607 else if (pp->type == t_pppParam::GLONASS_OFFSET) {
608 pp->xx = 0.0;
609 for (int jj = 1; jj <= _params.size(); jj++) {
610 _QQ(iPar, jj) = 0.0;
611 }
612 _QQ(iPar,iPar) = 1000.0 * 1000.0;
613 }
614
615 // Galileo Offset
616 // --------------
617 else if (pp->type == t_pppParam::GALILEO_OFFSET) {
[9471]618 if (_QQ(iPar,iPar)>pow(1000.0,2))
619 _QQ(iPar,iPar) = 1000.0 * 1000.0;
620 else
621 _QQ(iPar,iPar) += 0.1 * 0.1;
[7235]622 }
623
624 // BDS Offset
625 // ----------
626 else if (pp->type == t_pppParam::BDS_OFFSET) {
[9471]627 if (_QQ(iPar,iPar)>pow(1000.0,2))
628 _QQ(iPar,iPar) = 1000.0 * 1000.0;
629 else
630 _QQ(iPar,iPar) += 0.1 * 0.1;
[7235]631 }
632 }
633 }
634
635 // Add New Ambiguities if necessary
636 // --------------------------------
637 if (OPT->ambLCs('G').size() || OPT->ambLCs('R').size() ||
638 OPT->ambLCs('E').size() || OPT->ambLCs('C').size()) {
639
640 // Make a copy of QQ and xx, set parameter indices
641 // -----------------------------------------------
642 SymmetricMatrix QQ_old = _QQ;
[7287]643
[7235]644 for (int iPar = 1; iPar <= _params.size(); iPar++) {
645 _params[iPar-1]->index_old = _params[iPar-1]->index;
646 _params[iPar-1]->index = 0;
647 }
[7287]648
[7235]649 // Remove Ambiguity Parameters without observations
650 // ------------------------------------------------
651 int iPar = 0;
652 QMutableVectorIterator<t_pppParam*> im(_params);
653 while (im.hasNext()) {
654 t_pppParam* par = im.next();
655 bool removed = false;
656 if (par->type == t_pppParam::AMB_L3) {
657 if (epoData->satData.find(par->prn) == epoData->satData.end()) {
658 removed = true;
659 delete par;
660 im.remove();
661 }
662 }
663 if (! removed) {
664 ++iPar;
665 par->index = iPar;
666 }
667 }
[7287]668
[7235]669 // Add new ambiguity parameters
670 // ----------------------------
671 QMapIterator<QString, t_satData*> it(epoData->satData);
672 while (it.hasNext()) {
673 it.next();
674 t_satData* satData = it.value();
675 addAmb(satData);
676 }
[7287]677
[7235]678 int nPar = _params.size();
679 _QQ.ReSize(nPar); _QQ = 0.0;
680 for (int i1 = 1; i1 <= nPar; i1++) {
681 t_pppParam* p1 = _params[i1-1];
682 if (p1->index_old != 0) {
683 _QQ(p1->index, p1->index) = QQ_old(p1->index_old, p1->index_old);
684 for (int i2 = 1; i2 <= nPar; i2++) {
685 t_pppParam* p2 = _params[i2-1];
686 if (p2->index_old != 0) {
687 _QQ(p1->index, p2->index) = QQ_old(p1->index_old, p2->index_old);
688 }
689 }
690 }
691 }
[7287]692
[7235]693 for (int ii = 1; ii <= nPar; ii++) {
694 t_pppParam* par = _params[ii-1];
695 if (par->index_old == 0) {
696 _QQ(par->index, par->index) = OPT->_aprSigAmb * OPT->_aprSigAmb;
697 }
698 par->index_old = par->index;
699 }
700 }
701}
702
703// Update Step of the Filter (currently just a single-epoch solution)
704////////////////////////////////////////////////////////////////////////////
705t_irc t_pppFilter::update(t_epoData* epoData) {
706
707 Tracer tracer("t_pppFilter::update");
708
709 _time = epoData->tt; // current epoch time
710
711 if (OPT->useOrbClkCorr()) {
[7536]712 LOG << "Precise Point Positioning of Epoch " << _time.datestr() << "_" << _time.timestr(3)
[7235]713 << "\n---------------------------------------------------------------\n";
714 }
715 else {
[7536]716 LOG << "Single Point Positioning of Epoch " << _time.datestr() << "_" << _time.timestr(3)
717 << "\n---------------------------------------------------------------\n";
[7235]718 }
719
720 // Outlier Detection Loop
721 // ----------------------
722 if (update_p(epoData) != success) {
723 return failure;
724 }
725
726 // Set Solution Vector
727 // -------------------
728 LOG.setf(ios::fixed);
729 QVectorIterator<t_pppParam*> itPar(_params);
730 while (itPar.hasNext()) {
731 t_pppParam* par = itPar.next();
732 if (par->type == t_pppParam::RECCLK) {
[7536]733 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
734 << " CLK " << setw(10) << setprecision(3) << par->xx
[7287]735 << " +- " << setw(6) << setprecision(3)
[7235]736 << sqrt(_QQ(par->index,par->index));
737 }
738 else if (par->type == t_pppParam::AMB_L3) {
739 ++par->numEpo;
[7536]740 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
741 << " AMB " << par->prn.mid(0,3).toAscii().data() << " "
[7287]742 << setw(10) << setprecision(3) << par->xx
743 << " +- " << setw(6) << setprecision(3)
[7235]744 << sqrt(_QQ(par->index,par->index))
[7544]745 << " epo = " << par->numEpo;
[7235]746 }
747 else if (par->type == t_pppParam::TROPO) {
748 double aprTrp = delay_saast(M_PI/2.0);
[7536]749 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
750 << " TRP " << par->prn.mid(0,3).toAscii().data()
[7235]751 << setw(7) << setprecision(3) << aprTrp << " "
752 << setw(6) << setprecision(3) << showpos << par->xx << noshowpos
[7287]753 << " +- " << setw(6) << setprecision(3)
[7235]754 << sqrt(_QQ(par->index,par->index));
755 }
756 else if (par->type == t_pppParam::GLONASS_OFFSET) {
[7536]757 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
758 << " OFFGLO " << setw(10) << setprecision(3) << par->xx
[7287]759 << " +- " << setw(6) << setprecision(3)
[7235]760 << sqrt(_QQ(par->index,par->index));
761 }
762 else if (par->type == t_pppParam::GALILEO_OFFSET) {
[7536]763 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
764 << " OFFGAL " << setw(10) << setprecision(3) << par->xx
[7287]765 << " +- " << setw(6) << setprecision(3)
[7235]766 << sqrt(_QQ(par->index,par->index));
767 }
768 else if (par->type == t_pppParam::BDS_OFFSET) {
[7536]769 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
770 << " OFFBDS " << setw(10) << setprecision(3) << par->xx
[7235]771 << " +- " << setw(6) << setprecision(3)
772 << sqrt(_QQ(par->index,par->index));
773 }
774 }
775
776 LOG << endl << endl;
777
778 // Compute dilution of precision
779 // -----------------------------
780 cmpDOP(epoData);
781
782 // Final Message (both log file and screen)
783 // ----------------------------------------
[7544]784 LOG << epoData->tt.datestr() << "_" << epoData->tt.timestr(3)
785 << " " << OPT->_roverName
786 << " X = "
787 << setprecision(4) << x() << " +- "
788 << setprecision(4) << sqrt(_QQ(1,1))
[7235]789
[7544]790 << " Y = "
791 << setprecision(4) << y() << " +- "
792 << setprecision(4) << sqrt(_QQ(2,2))
793
794 << " Z = "
795 << setprecision(4) << z() << " +- "
796 << setprecision(4) << sqrt(_QQ(3,3));
797
[7235]798 // NEU Output
799 // ----------
800 if (OPT->xyzAprRoverSet()) {
[7544]801 SymmetricMatrix QQxyz = _QQ.SymSubMatrix(1,3);
[7235]802
[7544]803 ColumnVector xyz(3);
804 xyz(1) = x() - OPT->_xyzAprRover[0];
805 xyz(2) = y() - OPT->_xyzAprRover[1];
806 xyz(3) = z() - OPT->_xyzAprRover[2];
[7235]807
[7544]808 ColumnVector ellRef(3);
809 xyz2ell(OPT->_xyzAprRover.data(), ellRef.data());
810 xyz2neu(ellRef.data(), xyz.data(), _neu.data());
811
812 SymmetricMatrix QQneu(3);
813 covariXYZ_NEU(QQxyz, ellRef.data(), QQneu);
814
815 LOG << " dN = "
816 << setprecision(4) << _neu[0] << " +- "
817 << setprecision(4) << sqrt(QQneu[0][0])
818
819 << " dE = "
820 << setprecision(4) << _neu[1] << " +- "
821 << setprecision(4) << sqrt(QQneu[1][1])
822
823 << " dU = "
824 << setprecision(4) << _neu[2] << " +- "
825 << setprecision(4) << sqrt(QQneu[2][2]) << endl << endl;
[7235]826 }
827 else {
828 LOG << endl << endl;
829 }
830
831 _lastTimeOK = _time; // remember time of last successful update
832 return success;
833}
834
[9471]835// Iono combi noise factor
836////////////////////////////////////////////////////////////////////////////
837double ionFac(const QString prn, QMap<QString, t_satData*>& satData) {
838 if (satData.contains(prn))
839 return sqrt(pow(satData.value(prn)->lkA,2) +
840 pow(satData.value(prn)->lkB,2) );
841 else
842 return 0.0;
843};
844
[7235]845// Outlier Detection
846////////////////////////////////////////////////////////////////////////////
847QString t_pppFilter::outlierDetection(int iPhase, const ColumnVector& vv,
[7960]848 QMap<QString, t_satData*>& satData) {
[7235]849
850 Tracer tracer("t_pppFilter::outlierDetection");
851
852 QString prnGPS;
853 QString prnGlo;
[9471]854
855 double ionFacGPS;
856 double ionFacGLO;
857
[7287]858 double maxResGPS = 0.0; // GPS + Galileo
859 double maxResGlo = 0.0; // GLONASS + BDS
[9471]860
[7235]861 findMaxRes(vv, satData, prnGPS, prnGlo, maxResGPS, maxResGlo);
862
[9471]863 ionFacGLO = ionFac(prnGlo,satData);
864 if (iPhase == 0)
865 ionFacGLO *= (prnGlo[0]=='R'? GLONASS_WEIGHT_FACTOR : BDS_WEIGHT_FACTOR);
866 ionFacGPS = ionFac(prnGPS,satData);
867
[7235]868 if (iPhase == 1) {
[9471]869 if (maxResGlo > ionFacGLO * OPT->_maxResL1) {
[7235]870 LOG << "Outlier Phase " << prnGlo.mid(0,3).toAscii().data() << ' ' << maxResGlo << endl;
871 return prnGlo;
872 }
[9471]873 else if (maxResGPS > ionFacGPS * OPT->_maxResL1) {
[7235]874 LOG << "Outlier Phase " << prnGPS.mid(0,3).toAscii().data() << ' ' << maxResGPS << endl;
875 return prnGPS;
876 }
877 }
[9471]878 else if (iPhase == 0) {
879 if (maxResGlo > ionFacGLO * OPT->_maxResC1) {
880 LOG << "Outlier Code " << prnGlo.mid(0,3).toLatin1().data() << ' ' << maxResGlo << endl;
881 return prnGlo;
882 }
883 else if (maxResGPS > ionFacGPS * OPT->_maxResC1) {
884 LOG << "Outlier Code " << prnGPS.mid(0,3).toLatin1().data() << ' ' << maxResGPS << endl;
885 return prnGPS;
886 }
[7235]887 }
888
889 return QString();
890}
891
892// Phase Wind-Up Correction
893///////////////////////////////////////////////////////////////////////////
894double t_pppFilter::windUp(const QString& prn, const ColumnVector& rSat,
[9471]895 const ColumnVector& rRec) {
[7235]896
897 Tracer tracer("t_pppFilter::windUp");
898
899 double Mjd = _time.mjd() + _time.daysec() / 86400.0;
900
901 // First time - initialize to zero
902 // -------------------------------
903 if (!_windUpTime.contains(prn)) {
904 _windUpSum[prn] = 0.0;
905 }
906
907 // Compute the correction for new time
908 // -----------------------------------
909 if (!_windUpTime.contains(prn) || _windUpTime[prn] != Mjd) {
[7287]910 _windUpTime[prn] = Mjd;
[7235]911
912 // Unit Vector GPS Satellite --> Receiver
913 // --------------------------------------
914 ColumnVector rho = rRec - rSat;
915 rho /= rho.norm_Frobenius();
[7287]916
[7235]917 // GPS Satellite unit Vectors sz, sy, sx
918 // -------------------------------------
919 ColumnVector sz = -rSat / rSat.norm_Frobenius();
920
921 ColumnVector xSun = t_astro::Sun(Mjd);
922 xSun /= xSun.norm_Frobenius();
923
924 ColumnVector sy = crossproduct(sz, xSun);
925 ColumnVector sx = crossproduct(sy, sz);
926
927 // Effective Dipole of the GPS Satellite Antenna
928 // ---------------------------------------------
[7287]929 ColumnVector dipSat = sx - rho * DotProduct(rho,sx)
[7235]930 - crossproduct(rho, sy);
[7287]931
[7235]932 // Receiver unit Vectors rx, ry
933 // ----------------------------
934 ColumnVector rx(3);
935 ColumnVector ry(3);
936
937 double recEll[3]; xyz2ell(rRec.data(), recEll) ;
938 double neu[3];
[7287]939
[7235]940 neu[0] = 1.0;
941 neu[1] = 0.0;
942 neu[2] = 0.0;
943 neu2xyz(recEll, neu, rx.data());
[7287]944
[7235]945 neu[0] = 0.0;
946 neu[1] = -1.0;
947 neu[2] = 0.0;
948 neu2xyz(recEll, neu, ry.data());
[7287]949
[7235]950 // Effective Dipole of the Receiver Antenna
951 // ----------------------------------------
[7287]952 ColumnVector dipRec = rx - rho * DotProduct(rho,rx)
[7235]953 + crossproduct(rho, ry);
[7287]954
[7235]955 // Resulting Effect
956 // ----------------
[7287]957 double alpha = DotProduct(dipSat,dipRec) /
[7235]958 (dipSat.norm_Frobenius() * dipRec.norm_Frobenius());
[7287]959
[7235]960 if (alpha > 1.0) alpha = 1.0;
961 if (alpha < -1.0) alpha = -1.0;
[7287]962
[7235]963 double dphi = acos(alpha) / 2.0 / M_PI; // in cycles
[7287]964
[7235]965 if ( DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0 ) {
966 dphi = -dphi;
967 }
968
969 _windUpSum[prn] = floor(_windUpSum[prn] - dphi + 0.5) + dphi;
970 }
971
[7287]972 return _windUpSum[prn];
[7235]973}
974
[7287]975//
[7235]976///////////////////////////////////////////////////////////////////////////
977void t_pppFilter::cmpEle(t_satData* satData) {
978 Tracer tracer("t_pppFilter::cmpEle");
979 ColumnVector rr = satData->xx - _xcBanc.Rows(1,3);
980 double rho = rr.norm_Frobenius();
981
982 double neu[3];
983 xyz2neu(_ellBanc.data(), rr.data(), neu);
984
985 satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
986 if (neu[2] < 0) {
987 satData->eleSat *= -1.0;
988 }
989 satData->azSat = atan2(neu[1], neu[0]);
990}
991
[7287]992//
[7235]993///////////////////////////////////////////////////////////////////////////
994void t_pppFilter::addAmb(t_satData* satData) {
995 Tracer tracer("t_pppFilter::addAmb");
996 if (!OPT->ambLCs(satData->system()).size()){
997 return;
998 }
999 bool found = false;
1000 for (int iPar = 1; iPar <= _params.size(); iPar++) {
[7287]1001 if (_params[iPar-1]->type == t_pppParam::AMB_L3 &&
[7235]1002 _params[iPar-1]->prn == satData->prn) {
1003 found = true;
1004 break;
1005 }
1006 }
1007 if (!found) {
[7287]1008 t_pppParam* par = new t_pppParam(t_pppParam::AMB_L3,
[7235]1009 _params.size()+1, satData->prn);
1010 _params.push_back(par);
1011 par->xx = satData->L3 - cmpValue(satData, true);
1012 }
1013}
1014
[7287]1015//
[7235]1016///////////////////////////////////////////////////////////////////////////
1017void t_pppFilter::addObs(int iPhase, unsigned& iObs, t_satData* satData,
1018 Matrix& AA, ColumnVector& ll, DiagonalMatrix& PP) {
1019
1020 Tracer tracer("t_pppFilter::addObs");
1021
1022 const double ELEWGHT = 20.0;
1023 double ellWgtCoef = 1.0;
[7287]1024 double eleD = satData->eleSat * 180.0 / M_PI;
[7235]1025 if (eleD < ELEWGHT) {
1026 ellWgtCoef = 1.5 - 0.5 / (ELEWGHT - 10.0) * (eleD - 10.0);
1027 }
1028
1029 // Remember Observation Index
1030 // --------------------------
1031 ++iObs;
1032 satData->obsIndex = iObs;
1033
[9471]1034 // Iono-free combination noise factor
1035 // ----------------------------------
1036 double ionFac = sqrt(pow(satData->lkA,2) + pow(satData->lkB,2));
1037
[7235]1038 // Phase Observations
1039 // ------------------
1040
1041 if (iPhase == 1) {
[9471]1042 double sigL3 = ionFac * ellWgtCoef * OPT->_sigmaL1;
[7235]1043 if (satData->system() == 'R') {
1044 sigL3 *= GLONASS_WEIGHT_FACTOR;
1045 }
1046 if (satData->system() == 'C') {
1047 sigL3 *= BDS_WEIGHT_FACTOR;
1048 }
[9471]1049 satData->L3sig = sigL3;
1050 ll(iObs) = satData->L3 - cmpValue(satData, true);
1051 PP(iObs,iObs) = 1.0 / (sigL3 * sigL3);
[7235]1052 for (int iPar = 1; iPar <= _params.size(); iPar++) {
1053 if (_params[iPar-1]->type == t_pppParam::AMB_L3 &&
1054 _params[iPar-1]->prn == satData->prn) {
1055 ll(iObs) -= _params[iPar-1]->xx;
[7287]1056 }
[7235]1057 AA(iObs, iPar) = _params[iPar-1]->partial(satData, true);
1058 }
1059 }
1060
1061 // Code Observations
1062 // -----------------
1063 else {
[9471]1064 double sigP3 = ionFac * ellWgtCoef * OPT->_sigmaC1;
1065 if (satData->system() == 'R') {
1066 sigP3 *= GLONASS_WEIGHT_FACTOR;
1067 }
1068 if (satData->system() == 'C') {
1069 sigP3 *= BDS_WEIGHT_FACTOR;
1070 }
1071 satData->P3sig = sigP3;
[7235]1072 ll(iObs) = satData->P3 - cmpValue(satData, false);
[9471]1073 PP(iObs,iObs) = 1.0 / (sigP3 * sigP3);
[7235]1074 for (int iPar = 1; iPar <= _params.size(); iPar++) {
1075 AA(iObs, iPar) = _params[iPar-1]->partial(satData, false);
1076 }
1077 }
1078}
1079
[7287]1080//
[7235]1081///////////////////////////////////////////////////////////////////////////
[7287]1082QByteArray t_pppFilter::printRes(int iPhase, const ColumnVector& vv,
[7235]1083 const QMap<QString, t_satData*>& satDataMap) {
1084
1085 Tracer tracer("t_pppFilter::printRes");
1086
1087 ostringstream str;
1088 str.setf(ios::fixed);
1089 bool useObs;
1090 QMapIterator<QString, t_satData*> it(satDataMap);
1091 while (it.hasNext()) {
1092 it.next();
1093 t_satData* satData = it.value();
1094 (iPhase == 0) ? useObs = OPT->codeLCs(satData->system()).size() :
1095 useObs = OPT->ambLCs(satData->system()).size();
1096 if (satData->obsIndex != 0 && useObs) {
[7536]1097 str << _time.datestr() << "_" << _time.timestr(3)
[7235]1098 << " RES " << satData->prn.mid(0,3).toAscii().data()
1099 << (iPhase ? " L3 " : " P3 ")
[9474]1100 << setw(9) << setprecision(4) << vv(satData->obsIndex) << " "
1101 /*
1102 << setprecision(3)
1103 << setw(7) << (iPhase? satData->L3sig : satData->P3sig) << " "
1104 << setprecision(1)
1105 << setw(5) <<satData->eleSat * 180 / M_PI
1106 */
1107 << endl;
[7235]1108 }
1109 }
1110
1111 return QByteArray(str.str().c_str());
1112}
1113
[7287]1114//
[7235]1115///////////////////////////////////////////////////////////////////////////
1116void t_pppFilter::findMaxRes(const ColumnVector& vv,
1117 const QMap<QString, t_satData*>& satData,
[7287]1118 QString& prnGPS, QString& prnGlo,
1119 double& maxResGPS, double& maxResGlo) {
[7235]1120
1121 Tracer tracer("t_pppFilter::findMaxRes");
1122
1123 maxResGPS = 0.0;
1124 maxResGlo = 0.0;
1125
1126 QMapIterator<QString, t_satData*> it(satData);
1127 while (it.hasNext()) {
1128 it.next();
1129 t_satData* satData = it.value();
1130 if (satData->obsIndex != 0) {
1131 QString prn = satData->prn;
[7287]1132 if (prn[0] == 'R' || prn[0] == 'C') {
[7235]1133 if (fabs(vv(satData->obsIndex)) > maxResGlo) {
1134 maxResGlo = fabs(vv(satData->obsIndex));
1135 prnGlo = prn;
1136 }
1137 }
1138 else {
1139 if (fabs(vv(satData->obsIndex)) > maxResGPS) {
1140 maxResGPS = fabs(vv(satData->obsIndex));
1141 prnGPS = prn;
1142 }
1143 }
1144 }
1145 }
1146}
[7287]1147
[7235]1148// Update Step (private - loop over outliers)
1149////////////////////////////////////////////////////////////////////////////
1150t_irc t_pppFilter::update_p(t_epoData* epoData) {
1151
1152 Tracer tracer("t_pppFilter::update_p");
1153
1154 // Save Variance-Covariance Matrix, and Status Vector
1155 // --------------------------------------------------
1156 rememberState(epoData);
1157
1158 QString lastOutlierPrn;
1159
1160 // Try with all satellites, then with all minus one, etc.
1161 // ------------------------------------------------------
1162 while (selectSatellites(lastOutlierPrn, epoData->satData) == success) {
1163
1164 QByteArray strResCode;
1165 QByteArray strResPhase;
1166
1167 // Bancroft Solution
1168 // -----------------
1169 if (cmpBancroft(epoData) != success) {
1170 break;
1171 }
1172
1173 // First update using code observations, then phase observations
[7287]1174 // -------------------------------------------------------------
[7235]1175 bool usePhase = OPT->ambLCs('G').size() || OPT->ambLCs('R').size() ||
1176 OPT->ambLCs('E').size() || OPT->ambLCs('C').size() ;
1177
[7545]1178 char sys[] ={'G', 'R', 'E', 'C'};
1179
1180 bool satnumPrinted[] = {false, false, false, false};
1181
[7235]1182 for (int iPhase = 0; iPhase <= (usePhase ? 1 : 0); iPhase++) {
1183
1184 // Status Prediction
1185 // -----------------
1186 predict(iPhase, epoData);
[7287]1187
[7235]1188 // Create First-Design Matrix
1189 // --------------------------
1190 unsigned nPar = _params.size();
1191 unsigned nObs = 0;
1192 nObs = epoData->sizeAll();
1193 bool useObs = false;
1194 for (unsigned ii = 0; ii < sizeof(sys); ii++) {
1195 const char s = sys[ii];
1196 (iPhase == 0) ? useObs = OPT->codeLCs(s).size() : useObs = OPT->ambLCs(s).size();
1197 if (!useObs) {
1198 nObs -= epoData->sizeSys(s);
1199 }
[7536]1200 else {
[7545]1201 if (!satnumPrinted[ii]) {
1202 satnumPrinted[ii] = true;
[7544]1203 LOG << _time.datestr() << "_" << _time.timestr(3)
1204 << " SATNUM " << s << ' ' << right << setw(2)
1205 << epoData->sizeSys(s) << endl;
1206 }
[7536]1207 }
[7235]1208 }
[7287]1209
[7975]1210 if (int(nObs) < OPT->_minObs) {
[7852]1211 restoreState(epoData);
1212 return failure;
1213 }
1214
[7235]1215 // Prepare first-design Matrix, vector observed-computed
1216 // -----------------------------------------------------
1217 Matrix AA(nObs, nPar); // first design matrix
[7287]1218 ColumnVector ll(nObs); // terms observed-computed
[7235]1219 DiagonalMatrix PP(nObs); PP = 0.0;
[7287]1220
[7235]1221 unsigned iObs = 0;
1222 QMapIterator<QString, t_satData*> it(epoData->satData);
[7536]1223
[7235]1224 while (it.hasNext()) {
1225 it.next();
1226 t_satData* satData = it.value();
1227 QString prn = satData->prn;
1228 (iPhase == 0) ? useObs = OPT->codeLCs(satData->system()).size() :
1229 useObs = OPT->ambLCs(satData->system()).size();
1230 if (useObs) {
1231 addObs(iPhase, iObs, satData, AA, ll, PP);
1232 } else {
1233 satData->obsIndex = 0;
1234 }
1235 }
1236
1237 // Compute Filter Update
1238 // ---------------------
1239 ColumnVector dx(nPar); dx = 0.0;
1240 kalman(AA, ll, PP, _QQ, dx);
1241 ColumnVector vv = ll - AA * dx;
[7287]1242
[7235]1243 // Print Residuals
1244 // ---------------
[7287]1245 if (iPhase == 0) {
[7235]1246 strResCode = printRes(iPhase, vv, epoData->satData);
1247 }
1248 else {
1249 strResPhase = printRes(iPhase, vv, epoData->satData);
1250 }
1251
1252 // Check the residuals
1253 // -------------------
1254 lastOutlierPrn = outlierDetection(iPhase, vv, epoData->satData);
1255
1256 // No Outlier Detected
1257 // -------------------
1258 if (lastOutlierPrn.isEmpty()) {
1259
1260 QVectorIterator<t_pppParam*> itPar(_params);
1261 while (itPar.hasNext()) {
1262 t_pppParam* par = itPar.next();
1263 par->xx += dx(par->index);
1264 }
1265
1266 if (!usePhase || iPhase == 1) {
1267 if (_outlierGPS.size() > 0 || _outlierGlo.size() > 0) {
1268 LOG << "Neglected PRNs: ";
1269 if (!_outlierGPS.isEmpty()) {
1270 LOG << _outlierGPS.last().mid(0,3).toAscii().data() << ' ';
1271 }
1272 QStringListIterator itGlo(_outlierGlo);
1273 while (itGlo.hasNext()) {
1274 QString prn = itGlo.next();
1275 LOG << prn.mid(0,3).toAscii().data() << ' ';
1276 }
[7573]1277 LOG << endl;
[7235]1278 }
1279 LOG << strResCode.data() << strResPhase.data();
1280
1281 return success;
1282 }
1283 }
1284
1285 // Outlier Found
1286 // -------------
1287 else {
1288 restoreState(epoData);
1289 break;
1290 }
1291
1292 } // for iPhase
1293
1294 } // while selectSatellites
1295
1296 restoreState(epoData);
1297 return failure;
1298}
1299
[9471]1300// Remember Original State Vector and Variance-Covariance Matrix
[7235]1301////////////////////////////////////////////////////////////////////////////
1302void t_pppFilter::rememberState(t_epoData* epoData) {
1303
1304 _QQ_sav = _QQ;
1305
1306 QVectorIterator<t_pppParam*> itSav(_params_sav);
1307 while (itSav.hasNext()) {
1308 t_pppParam* par = itSav.next();
1309 delete par;
1310 }
1311 _params_sav.clear();
1312
1313 QVectorIterator<t_pppParam*> it(_params);
1314 while (it.hasNext()) {
1315 t_pppParam* par = it.next();
1316 _params_sav.push_back(new t_pppParam(*par));
1317 }
1318
1319 _epoData_sav->deepCopy(epoData);
1320}
1321
1322// Restore Original State Vector and Variance-Covariance Matrix
1323////////////////////////////////////////////////////////////////////////////
1324void t_pppFilter::restoreState(t_epoData* epoData) {
1325
1326 _QQ = _QQ_sav;
1327
1328 QVectorIterator<t_pppParam*> it(_params);
1329 while (it.hasNext()) {
1330 t_pppParam* par = it.next();
1331 delete par;
1332 }
1333 _params.clear();
1334
1335 QVectorIterator<t_pppParam*> itSav(_params_sav);
1336 while (itSav.hasNext()) {
1337 t_pppParam* par = itSav.next();
1338 _params.push_back(new t_pppParam(*par));
1339 }
1340
1341 epoData->deepCopy(_epoData_sav);
1342}
1343
[7287]1344//
[7235]1345////////////////////////////////////////////////////////////////////////////
[7287]1346t_irc t_pppFilter::selectSatellites(const QString& lastOutlierPrn,
[7235]1347 QMap<QString, t_satData*>& satData) {
1348
[7287]1349 // First Call
[7235]1350 // ----------
1351 if (lastOutlierPrn.isEmpty()) {
1352 _outlierGPS.clear();
1353 _outlierGlo.clear();
1354 return success;
1355 }
1356
1357 // Second and next trials
1358 // ----------------------
1359 else {
1360
[7287]1361 if (lastOutlierPrn[0] == 'R' || lastOutlierPrn[0] == 'C') {
[7235]1362 _outlierGlo << lastOutlierPrn;
1363 }
1364
1365 // Remove all Glonass Outliers
1366 // ---------------------------
1367 QStringListIterator it(_outlierGlo);
1368 while (it.hasNext()) {
1369 QString prn = it.next();
1370 if (satData.contains(prn)) {
1371 delete satData.take(prn);
1372 }
1373 }
1374
[7287]1375 if (lastOutlierPrn[0] == 'R' || lastOutlierPrn[0] == 'C') {
[7235]1376 _outlierGPS.clear();
1377 return success;
1378 }
1379
1380 // GPS Outlier appeared for the first time - try to delete it
1381 // ----------------------------------------------------------
1382 if (_outlierGPS.indexOf(lastOutlierPrn) == -1) {
1383 _outlierGPS << lastOutlierPrn;
1384 if (satData.contains(lastOutlierPrn)) {
1385 delete satData.take(lastOutlierPrn);
1386 }
1387 return success;
1388 }
1389
1390 }
1391
1392 return failure;
1393}
1394
[7287]1395//
[7235]1396////////////////////////////////////////////////////////////////////////////
1397double lorentz(const ColumnVector& aa, const ColumnVector& bb) {
1398 return aa(1)*bb(1) + aa(2)*bb(2) + aa(3)*bb(3) - aa(4)*bb(4);
1399}
1400
[7287]1401//
[7235]1402////////////////////////////////////////////////////////////////////////////
1403void t_pppFilter::bancroft(const Matrix& BBpass, ColumnVector& pos) {
1404
1405 if (pos.Nrows() != 4) {
1406 pos.ReSize(4);
1407 }
1408 pos = 0.0;
1409
1410 for (int iter = 1; iter <= 2; iter++) {
1411 Matrix BB = BBpass;
1412 int mm = BB.Nrows();
1413 for (int ii = 1; ii <= mm; ii++) {
1414 double xx = BB(ii,1);
1415 double yy = BB(ii,2);
1416 double traveltime = 0.072;
1417 if (iter > 1) {
1418 double zz = BB(ii,3);
[7287]1419 double rho = sqrt( (xx-pos(1)) * (xx-pos(1)) +
1420 (yy-pos(2)) * (yy-pos(2)) +
[7235]1421 (zz-pos(3)) * (zz-pos(3)) );
1422 traveltime = rho / t_CST::c;
1423 }
1424 double angle = traveltime * t_CST::omega;
1425 double cosa = cos(angle);
1426 double sina = sin(angle);
1427 BB(ii,1) = cosa * xx + sina * yy;
1428 BB(ii,2) = -sina * xx + cosa * yy;
1429 }
[7287]1430
[7235]1431 Matrix BBB;
1432 if (mm > 4) {
1433 SymmetricMatrix hlp; hlp << BB.t() * BB;
1434 BBB = hlp.i() * BB.t();
1435 }
1436 else {
1437 BBB = BB.i();
1438 }
1439 ColumnVector ee(mm); ee = 1.0;
1440 ColumnVector alpha(mm); alpha = 0.0;
1441 for (int ii = 1; ii <= mm; ii++) {
[7287]1442 alpha(ii) = lorentz(BB.Row(ii).t(),BB.Row(ii).t())/2.0;
[7235]1443 }
1444 ColumnVector BBBe = BBB * ee;
1445 ColumnVector BBBalpha = BBB * alpha;
1446 double aa = lorentz(BBBe, BBBe);
1447 double bb = lorentz(BBBe, BBBalpha)-1;
1448 double cc = lorentz(BBBalpha, BBBalpha);
1449 double root = sqrt(bb*bb-aa*cc);
1450
[7287]1451 Matrix hlpPos(4,2);
[7235]1452 hlpPos.Column(1) = (-bb-root)/aa * BBBe + BBBalpha;
1453 hlpPos.Column(2) = (-bb+root)/aa * BBBe + BBBalpha;
1454
1455 ColumnVector omc(2);
1456 for (int pp = 1; pp <= 2; pp++) {
1457 hlpPos(4,pp) = -hlpPos(4,pp);
[7287]1458 omc(pp) = BB(1,4) -
[7235]1459 sqrt( (BB(1,1)-hlpPos(1,pp)) * (BB(1,1)-hlpPos(1,pp)) +
1460 (BB(1,2)-hlpPos(2,pp)) * (BB(1,2)-hlpPos(2,pp)) +
[7287]1461 (BB(1,3)-hlpPos(3,pp)) * (BB(1,3)-hlpPos(3,pp)) ) -
[7235]1462 hlpPos(4,pp);
1463 }
1464 if ( fabs(omc(1)) > fabs(omc(2)) ) {
1465 pos = hlpPos.Column(2);
1466 }
1467 else {
1468 pos = hlpPos.Column(1);
1469 }
1470 }
1471}
1472
[7287]1473//
[7235]1474////////////////////////////////////////////////////////////////////////////
1475void t_pppFilter::cmpDOP(t_epoData* epoData) {
1476
1477 Tracer tracer("t_pppFilter::cmpDOP");
1478
1479 _numSat = 0;
[7933]1480 _hDop = 0.0;
[7235]1481
1482 if (_params.size() < 4) {
1483 return;
1484 }
1485
1486 const unsigned numPar = 4;
1487 Matrix AA(epoData->sizeAll(), numPar);
1488 QMapIterator<QString, t_satData*> it(epoData->satData);
1489 while (it.hasNext()) {
1490 it.next();
1491 t_satData* satData = it.value();
1492 _numSat += 1;
1493 for (unsigned iPar = 0; iPar < numPar; iPar++) {
1494 AA[_numSat-1][iPar] = _params[iPar]->partial(satData, false);
1495 }
1496 }
1497 if (_numSat < 4) {
1498 return;
1499 }
1500 AA = AA.Rows(1, _numSat);
[7287]1501 SymmetricMatrix NN; NN << AA.t() * AA;
[7235]1502 SymmetricMatrix QQ = NN.i();
[7287]1503
[7933]1504 _hDop = sqrt(QQ(1,1) + QQ(2,2));
[7235]1505}
Note: See TracBrowser for help on using the repository browser.