source: ntrip/branches/BNC_2.12/src/PPP_SSR_I/pppFilter.cpp@ 9471

Last change on this file since 9471 was 9471, checked in by stuerze, 3 years ago

some changes regarding signal usage for BDS PPP

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 39.9 KB
RevLine 
[7235]1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: t_pppParam, t_pppFilter
30 *
31 * Purpose: Model for PPP
32 *
33 * Author: L. Mervart
34 *
35 * Created: 01-Dec-2009
36 *
[7287]37 * Changes:
[7235]38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iomanip>
42#include <cmath>
43#include <sstream>
44#include <newmatio.h>
45#include <newmatap.h>
46
47#include "pppFilter.h"
48#include "pppClient.h"
49#include "bncutils.h"
50#include "bncantex.h"
51#include "pppOptions.h"
52#include "pppModel.h"
53
54using namespace BNC_PPP;
55using namespace std;
56
[7953]57const double GLONASS_WEIGHT_FACTOR = 5.0;
[9471]58const double BDS_WEIGHT_FACTOR = 2.0; // 5.0;
[7235]59
60#define LOG (_pppClient->log())
61#define OPT (_pppClient->opt())
62
63// Constructor
64////////////////////////////////////////////////////////////////////////////
[7287]65t_pppParam::t_pppParam(t_pppParam::parType typeIn, int indexIn,
[7235]66 const QString& prnIn) {
67 type = typeIn;
68 index = indexIn;
69 prn = prnIn;
70 index_old = 0;
71 xx = 0.0;
72 numEpo = 0;
73}
74
75// Destructor
76////////////////////////////////////////////////////////////////////////////
77t_pppParam::~t_pppParam() {
78}
79
80// Partial
81////////////////////////////////////////////////////////////////////////////
82double t_pppParam::partial(t_satData* satData, bool phase) {
83
84 Tracer tracer("t_pppParam::partial");
85
86 // Coordinates
87 // -----------
88 if (type == CRD_X) {
[7287]89 return (xx - satData->xx(1)) / satData->rho;
[7235]90 }
91 else if (type == CRD_Y) {
[7287]92 return (xx - satData->xx(2)) / satData->rho;
[7235]93 }
94 else if (type == CRD_Z) {
[7287]95 return (xx - satData->xx(3)) / satData->rho;
[7235]96 }
97
98 // Receiver Clocks
99 // ---------------
100 else if (type == RECCLK) {
101 return 1.0;
102 }
103
104 // Troposphere
105 // -----------
106 else if (type == TROPO) {
[7287]107 return 1.0 / sin(satData->eleSat);
[7235]108 }
109
110 // Glonass Offset
111 // --------------
112 else if (type == GLONASS_OFFSET) {
113 if (satData->prn[0] == 'R') {
114 return 1.0;
115 }
116 else {
117 return 0.0;
118 }
119 }
120
121 // Galileo Offset
122 // --------------
123 else if (type == GALILEO_OFFSET) {
124 if (satData->prn[0] == 'E') {
125 return 1.0;
126 }
127 else {
128 return 0.0;
129 }
130 }
131
132 // BDS Offset
133 // ----------
134 else if (type == BDS_OFFSET) {
135 if (satData->prn[0] == 'C') {
136 return 1.0;
137 }
138 else {
139 return 0.0;
140 }
141 }
142
143 // Ambiguities
144 // -----------
145 else if (type == AMB_L3) {
146 if (phase && satData->prn == prn) {
147 return 1.0;
148 }
149 else {
150 return 0.0;
151 }
152 }
153
154 // Default return
155 // --------------
156 return 0.0;
157}
158
159// Constructor
160////////////////////////////////////////////////////////////////////////////
161t_pppFilter::t_pppFilter(t_pppClient* pppClient) {
162
163 _pppClient = pppClient;
164 _tides = new t_tides();
165
166 // Antenna Name, ANTEX File
167 // ------------------------
168 _antex = 0;
169 if (!OPT->_antexFileName.empty()) {
170 _antex = new bncAntex(OPT->_antexFileName.c_str());
171 }
172
173 // Bancroft Coordinates
174 // --------------------
175 _xcBanc.ReSize(4); _xcBanc = 0.0;
176 _ellBanc.ReSize(3); _ellBanc = 0.0;
177
178 // Save copy of data (used in outlier detection)
179 // ---------------------------------------------
180 _epoData_sav = new t_epoData();
181
182 // Some statistics
183 // ---------------
184 _neu.ReSize(3); _neu = 0.0;
185 _numSat = 0;
[7933]186 _hDop = 0.0;
[7235]187}
188
189// Destructor
190////////////////////////////////////////////////////////////////////////////
191t_pppFilter::~t_pppFilter() {
192 delete _tides;
193 delete _antex;
194 for (int iPar = 1; iPar <= _params.size(); iPar++) {
195 delete _params[iPar-1];
196 }
197 for (int iPar = 1; iPar <= _params_sav.size(); iPar++) {
198 delete _params_sav[iPar-1];
199 }
200 delete _epoData_sav;
201}
202
203// Reset Parameters and Variance-Covariance Matrix
204////////////////////////////////////////////////////////////////////////////
205void t_pppFilter::reset() {
206
207 Tracer tracer("t_pppFilter::reset");
208
209 double lastTrp = 0.0;
210 for (int ii = 0; ii < _params.size(); ii++) {
211 t_pppParam* pp = _params[ii];
212 if (pp->type == t_pppParam::TROPO) {
213 lastTrp = pp->xx;
214 }
215 delete pp;
216 }
217 _params.clear();
218
219 int nextPar = 0;
220 _params.push_back(new t_pppParam(t_pppParam::CRD_X, ++nextPar, ""));
221 _params.push_back(new t_pppParam(t_pppParam::CRD_Y, ++nextPar, ""));
222 _params.push_back(new t_pppParam(t_pppParam::CRD_Z, ++nextPar, ""));
223 _params.push_back(new t_pppParam(t_pppParam::RECCLK, ++nextPar, ""));
224 if (OPT->estTrp()) {
225 _params.push_back(new t_pppParam(t_pppParam::TROPO, ++nextPar, ""));
226 }
227 if (OPT->useSystem('R')) {
228 _params.push_back(new t_pppParam(t_pppParam::GLONASS_OFFSET, ++nextPar, ""));
229 }
230 if (OPT->useSystem('E')) {
231 _params.push_back(new t_pppParam(t_pppParam::GALILEO_OFFSET, ++nextPar, ""));
232 }
233 if (OPT->useSystem('C')) {
234 _params.push_back(new t_pppParam(t_pppParam::BDS_OFFSET, ++nextPar, ""));
235 }
236
[7287]237 _QQ.ReSize(_params.size());
[7235]238 _QQ = 0.0;
239 for (int iPar = 1; iPar <= _params.size(); iPar++) {
240 t_pppParam* pp = _params[iPar-1];
241 pp->xx = 0.0;
242 if (pp->isCrd()) {
[7287]243 _QQ(iPar,iPar) = OPT->_aprSigCrd(1) * OPT->_aprSigCrd(1);
[7235]244 }
245 else if (pp->type == t_pppParam::RECCLK) {
[7287]246 _QQ(iPar,iPar) = OPT->_noiseClk * OPT->_noiseClk;
[7235]247 }
248 else if (pp->type == t_pppParam::TROPO) {
[7287]249 _QQ(iPar,iPar) = OPT->_aprSigTrp * OPT->_aprSigTrp;
[7235]250 pp->xx = lastTrp;
251 }
252 else if (pp->type == t_pppParam::GLONASS_OFFSET) {
253 _QQ(iPar,iPar) = 1000.0 * 1000.0;
254 }
255 else if (pp->type == t_pppParam::GALILEO_OFFSET) {
256 _QQ(iPar,iPar) = 1000.0 * 1000.0;
257 }
258 else if (pp->type == t_pppParam::BDS_OFFSET) {
259 _QQ(iPar,iPar) = 1000.0 * 1000.0;
260 }
261 }
262}
263
264// Bancroft Solution
265////////////////////////////////////////////////////////////////////////////
266t_irc t_pppFilter::cmpBancroft(t_epoData* epoData) {
267
268 Tracer tracer("t_pppFilter::cmpBancroft");
269
270 if (int(epoData->sizeSys('G')) < OPT->_minObs) {
271 LOG << "t_pppFilter::cmpBancroft: not enough data\n";
272 return failure;
273 }
274
275 Matrix BB(epoData->sizeSys('G'), 4);
276
277 QMapIterator<QString, t_satData*> it(epoData->satData);
278 int iObsBanc = 0;
279 while (it.hasNext()) {
280 it.next();
281 t_satData* satData = it.value();
282 if (satData->system() == 'G') {
283 ++iObsBanc;
284 QString prn = it.key();
285 BB(iObsBanc, 1) = satData->xx(1);
286 BB(iObsBanc, 2) = satData->xx(2);
287 BB(iObsBanc, 3) = satData->xx(3);
288 BB(iObsBanc, 4) = satData->P3 + satData->clk;
289 }
290 }
291
292 bancroft(BB, _xcBanc);
293
[8452]294 if (std::isnan(_xcBanc(1)) ||
295 std::isnan(_xcBanc(2)) ||
296 std::isnan(_xcBanc(3))) {
[7852]297 return failure;
298 }
299
[7235]300 // Ellipsoidal Coordinates
301 // ------------------------
302 xyz2ell(_xcBanc.data(), _ellBanc.data());
303
304 // Compute Satellite Elevations
305 // ----------------------------
306 QMutableMapIterator<QString, t_satData*> im(epoData->satData);
307 while (im.hasNext()) {
308 im.next();
309 t_satData* satData = im.value();
310 cmpEle(satData);
311 if (satData->eleSat < OPT->_minEle) {
312 delete satData;
313 im.remove();
314 }
315 }
316
317 return success;
318}
319
320// Computed Value
321////////////////////////////////////////////////////////////////////////////
322double t_pppFilter::cmpValue(t_satData* satData, bool phase) {
323
324 Tracer tracer("t_pppFilter::cmpValue");
325
326 ColumnVector xRec(3);
327 xRec(1) = x();
328 xRec(2) = y();
329 xRec(3) = z();
330
331 double rho0 = (satData->xx - xRec).norm_Frobenius();
[7287]332 double dPhi = t_CST::omega * rho0 / t_CST::c;
[7235]333
[7287]334 xRec(1) = x() * cos(dPhi) - y() * sin(dPhi);
335 xRec(2) = y() * cos(dPhi) + x() * sin(dPhi);
[7235]336 xRec(3) = z();
337
338 xRec += _tides->displacement(_time, xRec);
339
340 satData->rho = (satData->xx - xRec).norm_Frobenius();
341
[7287]342 double tropDelay = delay_saast(satData->eleSat) +
[7235]343 trp() / sin(satData->eleSat);
344
345 double wind = 0.0;
346 if (phase) {
347 wind = windUp(satData->prn, satData->xx, xRec) * satData->lambda3;
348 }
349
350 double offset = 0.0;
[9471]351
352 t_frequency::type frqA;
353 t_frequency::type frqB;
354
[7235]355 if (satData->prn[0] == 'R') {
356 offset = Glonass_offset();
357 frqA = t_frequency::R1;
358 frqB = t_frequency::R2;
359 }
360 else if (satData->prn[0] == 'E') {
361 offset = Galileo_offset();
[9043]362 frqA = t_frequency::E1;
363 frqB = t_frequency::E5;
[7235]364 }
365 else if (satData->prn[0] == 'C') {
366 offset = Bds_offset();
[9043]367 frqA = t_frequency::C2;
[9471]368 frqB = t_frequency::C6;
[7235]369 }
[9471]370 else {
371 frqA = t_frequency::G1;
372 frqB = t_frequency::G2;
373 }
374
[7235]375 double phaseCenter = 0.0;
[9471]376
[7287]377 if (_antex) {
[7235]378 bool found;
379 phaseCenter = satData->lkA * _antex->rcvCorr(OPT->_antNameRover, frqA,
380 satData->eleSat, satData->azSat,
381 found)
382 + satData->lkB * _antex->rcvCorr(OPT->_antNameRover, frqB,
383 satData->eleSat, satData->azSat,
384 found);
385 if (!found) {
386 LOG << "ANTEX: antenna >" << OPT->_antNameRover << "< not found\n";
387 }
388 }
389
390 double antennaOffset = 0.0;
391 double cosa = cos(satData->azSat);
392 double sina = sin(satData->azSat);
393 double cose = cos(satData->eleSat);
394 double sine = sin(satData->eleSat);
[7287]395 antennaOffset = -OPT->_neuEccRover(1) * cosa*cose
396 -OPT->_neuEccRover(2) * sina*cose
[7235]397 -OPT->_neuEccRover(3) * sine;
398
[7287]399 return satData->rho + phaseCenter + antennaOffset + clk()
[7235]400 + offset - satData->clk + tropDelay + wind;
401}
402
403// Tropospheric Model (Saastamoinen)
404////////////////////////////////////////////////////////////////////////////
405double t_pppFilter::delay_saast(double Ele) {
406
407 Tracer tracer("t_pppFilter::delay_saast");
408
[7287]409 double xyz[3];
[7235]410 xyz[0] = x();
411 xyz[1] = y();
412 xyz[2] = z();
[7287]413 double ell[3];
[7235]414 xyz2ell(xyz, ell);
415 double height = ell[2];
[9281]416 // Prevent pp from causing segmentation fault (Loukis)
417 if (height > 40000.0 ) {
418 return 0.000000001;
419 }
[7235]420
421 double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225);
422 double TT = 18.0 - height * 0.0065 + 273.15;
423 double hh = 50.0 * exp(-6.396e-4 * height);
424 double ee = hh / 100.0 * exp(-37.2465 + 0.213166*TT - 0.000256908*TT*TT);
425
426 double h_km = height / 1000.0;
[7287]427
[7235]428 if (h_km < 0.0) h_km = 0.0;
429 if (h_km > 5.0) h_km = 5.0;
430 int ii = int(h_km + 1);
431 double href = ii - 1;
[7287]432
433 double bCor[6];
[7235]434 bCor[0] = 1.156;
435 bCor[1] = 1.006;
436 bCor[2] = 0.874;
437 bCor[3] = 0.757;
438 bCor[4] = 0.654;
439 bCor[5] = 0.563;
[7287]440
[7235]441 double BB = bCor[ii-1] + (bCor[ii]-bCor[ii-1]) * (h_km - href);
[7287]442
[7235]443 double zen = M_PI/2.0 - Ele;
444
445 return (0.002277/cos(zen)) * (pp + ((1255.0/TT)+0.05)*ee - BB*(tan(zen)*tan(zen)));
446}
447
448// Prediction Step of the Filter
449////////////////////////////////////////////////////////////////////////////
450void t_pppFilter::predict(int iPhase, t_epoData* epoData) {
451
452 Tracer tracer("t_pppFilter::predict");
453
454 if (iPhase == 0) {
455
456 const double maxSolGap = 60.0;
457
458 bool firstCrd = false;
459 if (!_lastTimeOK.valid() || (maxSolGap > 0.0 && _time - _lastTimeOK > maxSolGap)) {
460 firstCrd = true;
461 _startTime = epoData->tt;
462 reset();
463 }
[7287]464
[7235]465 // Use different white noise for Quick-Start mode
466 // ----------------------------------------------
467 double sigCrdP_used = OPT->_noiseCrd(1);
468 if ( OPT->_seedingTime > 0.0 && OPT->_seedingTime > (epoData->tt - _startTime) ) {
469 sigCrdP_used = 0.0;
470 }
471
472 // Predict Parameter values, add white noise
473 // -----------------------------------------
474 for (int iPar = 1; iPar <= _params.size(); iPar++) {
475 t_pppParam* pp = _params[iPar-1];
[7287]476
[7235]477 // Coordinates
478 // -----------
479 if (pp->type == t_pppParam::CRD_X) {
480 if (firstCrd) {
481 if (OPT->xyzAprRoverSet()) {
482 pp->xx = OPT->_xyzAprRover[0];
483 }
484 else {
485 pp->xx = _xcBanc(1);
486 }
487 }
488 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
489 }
490 else if (pp->type == t_pppParam::CRD_Y) {
491 if (firstCrd) {
492 if (OPT->xyzAprRoverSet()) {
493 pp->xx = OPT->_xyzAprRover[1];
494 }
495 else {
496 pp->xx = _xcBanc(2);
497 }
498 }
499 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
500 }
501 else if (pp->type == t_pppParam::CRD_Z) {
502 if (firstCrd) {
503 if (OPT->xyzAprRoverSet()) {
504 pp->xx = OPT->_xyzAprRover[2];
505 }
506 else {
507 pp->xx = _xcBanc(3);
508 }
509 }
510 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
[7287]511 }
512
[7235]513 // Receiver Clocks
514 // ---------------
515 else if (pp->type == t_pppParam::RECCLK) {
516 pp->xx = _xcBanc(4);
517 for (int jj = 1; jj <= _params.size(); jj++) {
518 _QQ(iPar, jj) = 0.0;
519 }
520 _QQ(iPar,iPar) = OPT->_noiseClk * OPT->_noiseClk;
521 }
[7287]522
[7235]523 // Tropospheric Delay
524 // ------------------
525 else if (pp->type == t_pppParam::TROPO) {
526 _QQ(iPar,iPar) += OPT->_noiseTrp * OPT->_noiseTrp;
527 }
[7287]528
[7235]529 // Glonass Offset
530 // --------------
531 else if (pp->type == t_pppParam::GLONASS_OFFSET) {
532 pp->xx = 0.0;
533 for (int jj = 1; jj <= _params.size(); jj++) {
534 _QQ(iPar, jj) = 0.0;
535 }
536 _QQ(iPar,iPar) = 1000.0 * 1000.0;
537 }
538
539 // Galileo Offset
540 // --------------
541 else if (pp->type == t_pppParam::GALILEO_OFFSET) {
[9471]542 if (_QQ(iPar,iPar)>pow(1000.0,2))
543 _QQ(iPar,iPar) = 1000.0 * 1000.0;
544 else
545 _QQ(iPar,iPar) += 0.1 * 0.1;
[7235]546 }
547
548 // BDS Offset
549 // ----------
550 else if (pp->type == t_pppParam::BDS_OFFSET) {
[9471]551 if (_QQ(iPar,iPar)>pow(1000.0,2))
552 _QQ(iPar,iPar) = 1000.0 * 1000.0;
553 else
554 _QQ(iPar,iPar) += 0.1 * 0.1;
[7235]555 }
556 }
557 }
558
559 // Add New Ambiguities if necessary
560 // --------------------------------
561 if (OPT->ambLCs('G').size() || OPT->ambLCs('R').size() ||
562 OPT->ambLCs('E').size() || OPT->ambLCs('C').size()) {
563
564 // Make a copy of QQ and xx, set parameter indices
565 // -----------------------------------------------
566 SymmetricMatrix QQ_old = _QQ;
[7287]567
[7235]568 for (int iPar = 1; iPar <= _params.size(); iPar++) {
569 _params[iPar-1]->index_old = _params[iPar-1]->index;
570 _params[iPar-1]->index = 0;
571 }
[7287]572
[7235]573 // Remove Ambiguity Parameters without observations
574 // ------------------------------------------------
575 int iPar = 0;
576 QMutableVectorIterator<t_pppParam*> im(_params);
577 while (im.hasNext()) {
578 t_pppParam* par = im.next();
579 bool removed = false;
580 if (par->type == t_pppParam::AMB_L3) {
581 if (epoData->satData.find(par->prn) == epoData->satData.end()) {
582 removed = true;
583 delete par;
584 im.remove();
585 }
586 }
587 if (! removed) {
588 ++iPar;
589 par->index = iPar;
590 }
591 }
[7287]592
[7235]593 // Add new ambiguity parameters
594 // ----------------------------
595 QMapIterator<QString, t_satData*> it(epoData->satData);
596 while (it.hasNext()) {
597 it.next();
598 t_satData* satData = it.value();
599 addAmb(satData);
600 }
[7287]601
[7235]602 int nPar = _params.size();
603 _QQ.ReSize(nPar); _QQ = 0.0;
604 for (int i1 = 1; i1 <= nPar; i1++) {
605 t_pppParam* p1 = _params[i1-1];
606 if (p1->index_old != 0) {
607 _QQ(p1->index, p1->index) = QQ_old(p1->index_old, p1->index_old);
608 for (int i2 = 1; i2 <= nPar; i2++) {
609 t_pppParam* p2 = _params[i2-1];
610 if (p2->index_old != 0) {
611 _QQ(p1->index, p2->index) = QQ_old(p1->index_old, p2->index_old);
612 }
613 }
614 }
615 }
[7287]616
[7235]617 for (int ii = 1; ii <= nPar; ii++) {
618 t_pppParam* par = _params[ii-1];
619 if (par->index_old == 0) {
620 _QQ(par->index, par->index) = OPT->_aprSigAmb * OPT->_aprSigAmb;
621 }
622 par->index_old = par->index;
623 }
624 }
625}
626
627// Update Step of the Filter (currently just a single-epoch solution)
628////////////////////////////////////////////////////////////////////////////
629t_irc t_pppFilter::update(t_epoData* epoData) {
630
631 Tracer tracer("t_pppFilter::update");
632
633 _time = epoData->tt; // current epoch time
634
635 if (OPT->useOrbClkCorr()) {
[7536]636 LOG << "Precise Point Positioning of Epoch " << _time.datestr() << "_" << _time.timestr(3)
[7235]637 << "\n---------------------------------------------------------------\n";
638 }
639 else {
[7536]640 LOG << "Single Point Positioning of Epoch " << _time.datestr() << "_" << _time.timestr(3)
641 << "\n---------------------------------------------------------------\n";
[7235]642 }
643
644 // Outlier Detection Loop
645 // ----------------------
646 if (update_p(epoData) != success) {
647 return failure;
648 }
649
650 // Set Solution Vector
651 // -------------------
652 LOG.setf(ios::fixed);
653 QVectorIterator<t_pppParam*> itPar(_params);
654 while (itPar.hasNext()) {
655 t_pppParam* par = itPar.next();
656 if (par->type == t_pppParam::RECCLK) {
[7536]657 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
658 << " CLK " << setw(10) << setprecision(3) << par->xx
[7287]659 << " +- " << setw(6) << setprecision(3)
[7235]660 << sqrt(_QQ(par->index,par->index));
661 }
662 else if (par->type == t_pppParam::AMB_L3) {
663 ++par->numEpo;
[7536]664 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
665 << " AMB " << par->prn.mid(0,3).toAscii().data() << " "
[7287]666 << setw(10) << setprecision(3) << par->xx
667 << " +- " << setw(6) << setprecision(3)
[7235]668 << sqrt(_QQ(par->index,par->index))
[7544]669 << " epo = " << par->numEpo;
[7235]670 }
671 else if (par->type == t_pppParam::TROPO) {
672 double aprTrp = delay_saast(M_PI/2.0);
[7536]673 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
674 << " TRP " << par->prn.mid(0,3).toAscii().data()
[7235]675 << setw(7) << setprecision(3) << aprTrp << " "
676 << setw(6) << setprecision(3) << showpos << par->xx << noshowpos
[7287]677 << " +- " << setw(6) << setprecision(3)
[7235]678 << sqrt(_QQ(par->index,par->index));
679 }
680 else if (par->type == t_pppParam::GLONASS_OFFSET) {
[7536]681 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
682 << " OFFGLO " << setw(10) << setprecision(3) << par->xx
[7287]683 << " +- " << setw(6) << setprecision(3)
[7235]684 << sqrt(_QQ(par->index,par->index));
685 }
686 else if (par->type == t_pppParam::GALILEO_OFFSET) {
[7536]687 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
688 << " OFFGAL " << setw(10) << setprecision(3) << par->xx
[7287]689 << " +- " << setw(6) << setprecision(3)
[7235]690 << sqrt(_QQ(par->index,par->index));
691 }
692 else if (par->type == t_pppParam::BDS_OFFSET) {
[7536]693 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
694 << " OFFBDS " << setw(10) << setprecision(3) << par->xx
[7235]695 << " +- " << setw(6) << setprecision(3)
696 << sqrt(_QQ(par->index,par->index));
697 }
698 }
699
700 LOG << endl << endl;
701
702 // Compute dilution of precision
703 // -----------------------------
704 cmpDOP(epoData);
705
706 // Final Message (both log file and screen)
707 // ----------------------------------------
[7544]708 LOG << epoData->tt.datestr() << "_" << epoData->tt.timestr(3)
709 << " " << OPT->_roverName
710 << " X = "
711 << setprecision(4) << x() << " +- "
712 << setprecision(4) << sqrt(_QQ(1,1))
[7235]713
[7544]714 << " Y = "
715 << setprecision(4) << y() << " +- "
716 << setprecision(4) << sqrt(_QQ(2,2))
717
718 << " Z = "
719 << setprecision(4) << z() << " +- "
720 << setprecision(4) << sqrt(_QQ(3,3));
721
[7235]722 // NEU Output
723 // ----------
724 if (OPT->xyzAprRoverSet()) {
[7544]725 SymmetricMatrix QQxyz = _QQ.SymSubMatrix(1,3);
[7235]726
[7544]727 ColumnVector xyz(3);
728 xyz(1) = x() - OPT->_xyzAprRover[0];
729 xyz(2) = y() - OPT->_xyzAprRover[1];
730 xyz(3) = z() - OPT->_xyzAprRover[2];
[7235]731
[7544]732 ColumnVector ellRef(3);
733 xyz2ell(OPT->_xyzAprRover.data(), ellRef.data());
734 xyz2neu(ellRef.data(), xyz.data(), _neu.data());
735
736 SymmetricMatrix QQneu(3);
737 covariXYZ_NEU(QQxyz, ellRef.data(), QQneu);
738
739 LOG << " dN = "
740 << setprecision(4) << _neu[0] << " +- "
741 << setprecision(4) << sqrt(QQneu[0][0])
742
743 << " dE = "
744 << setprecision(4) << _neu[1] << " +- "
745 << setprecision(4) << sqrt(QQneu[1][1])
746
747 << " dU = "
748 << setprecision(4) << _neu[2] << " +- "
749 << setprecision(4) << sqrt(QQneu[2][2]) << endl << endl;
[7235]750 }
751 else {
752 LOG << endl << endl;
753 }
754
755 _lastTimeOK = _time; // remember time of last successful update
756 return success;
757}
758
[9471]759// Iono combi noise factor
760////////////////////////////////////////////////////////////////////////////
761double ionFac(const QString prn, QMap<QString, t_satData*>& satData) {
762 if (satData.contains(prn))
763 return sqrt(pow(satData.value(prn)->lkA,2) +
764 pow(satData.value(prn)->lkB,2) );
765 else
766 return 0.0;
767};
768
[7235]769// Outlier Detection
770////////////////////////////////////////////////////////////////////////////
771QString t_pppFilter::outlierDetection(int iPhase, const ColumnVector& vv,
[7960]772 QMap<QString, t_satData*>& satData) {
[7235]773
774 Tracer tracer("t_pppFilter::outlierDetection");
775
776 QString prnGPS;
777 QString prnGlo;
[9471]778
779 double ionFacGPS;
780 double ionFacGLO;
781
[7287]782 double maxResGPS = 0.0; // GPS + Galileo
783 double maxResGlo = 0.0; // GLONASS + BDS
[9471]784
[7235]785 findMaxRes(vv, satData, prnGPS, prnGlo, maxResGPS, maxResGlo);
786
[9471]787 ionFacGLO = ionFac(prnGlo,satData);
788 if (iPhase == 0)
789 ionFacGLO *= (prnGlo[0]=='R'? GLONASS_WEIGHT_FACTOR : BDS_WEIGHT_FACTOR);
790 ionFacGPS = ionFac(prnGPS,satData);
791
[7235]792 if (iPhase == 1) {
[9471]793 if (maxResGlo > ionFacGLO * OPT->_maxResL1) {
[7235]794 LOG << "Outlier Phase " << prnGlo.mid(0,3).toAscii().data() << ' ' << maxResGlo << endl;
795 return prnGlo;
796 }
[9471]797 else if (maxResGPS > ionFacGPS * OPT->_maxResL1) {
[7235]798 LOG << "Outlier Phase " << prnGPS.mid(0,3).toAscii().data() << ' ' << maxResGPS << endl;
799 return prnGPS;
800 }
801 }
[9471]802 else if (iPhase == 0) {
803 if (maxResGlo > ionFacGLO * OPT->_maxResC1) {
804 LOG << "Outlier Code " << prnGlo.mid(0,3).toLatin1().data() << ' ' << maxResGlo << endl;
805 return prnGlo;
806 }
807 else if (maxResGPS > ionFacGPS * OPT->_maxResC1) {
808 LOG << "Outlier Code " << prnGPS.mid(0,3).toLatin1().data() << ' ' << maxResGPS << endl;
809 return prnGPS;
810 }
[7235]811 }
812
813 return QString();
814}
815
816// Phase Wind-Up Correction
817///////////////////////////////////////////////////////////////////////////
818double t_pppFilter::windUp(const QString& prn, const ColumnVector& rSat,
[9471]819 const ColumnVector& rRec) {
[7235]820
821 Tracer tracer("t_pppFilter::windUp");
822
823 double Mjd = _time.mjd() + _time.daysec() / 86400.0;
824
825 // First time - initialize to zero
826 // -------------------------------
827 if (!_windUpTime.contains(prn)) {
828 _windUpSum[prn] = 0.0;
829 }
830
831 // Compute the correction for new time
832 // -----------------------------------
833 if (!_windUpTime.contains(prn) || _windUpTime[prn] != Mjd) {
[7287]834 _windUpTime[prn] = Mjd;
[7235]835
836 // Unit Vector GPS Satellite --> Receiver
837 // --------------------------------------
838 ColumnVector rho = rRec - rSat;
839 rho /= rho.norm_Frobenius();
[7287]840
[7235]841 // GPS Satellite unit Vectors sz, sy, sx
842 // -------------------------------------
843 ColumnVector sz = -rSat / rSat.norm_Frobenius();
844
845 ColumnVector xSun = t_astro::Sun(Mjd);
846 xSun /= xSun.norm_Frobenius();
847
848 ColumnVector sy = crossproduct(sz, xSun);
849 ColumnVector sx = crossproduct(sy, sz);
850
851 // Effective Dipole of the GPS Satellite Antenna
852 // ---------------------------------------------
[7287]853 ColumnVector dipSat = sx - rho * DotProduct(rho,sx)
[7235]854 - crossproduct(rho, sy);
[7287]855
[7235]856 // Receiver unit Vectors rx, ry
857 // ----------------------------
858 ColumnVector rx(3);
859 ColumnVector ry(3);
860
861 double recEll[3]; xyz2ell(rRec.data(), recEll) ;
862 double neu[3];
[7287]863
[7235]864 neu[0] = 1.0;
865 neu[1] = 0.0;
866 neu[2] = 0.0;
867 neu2xyz(recEll, neu, rx.data());
[7287]868
[7235]869 neu[0] = 0.0;
870 neu[1] = -1.0;
871 neu[2] = 0.0;
872 neu2xyz(recEll, neu, ry.data());
[7287]873
[7235]874 // Effective Dipole of the Receiver Antenna
875 // ----------------------------------------
[7287]876 ColumnVector dipRec = rx - rho * DotProduct(rho,rx)
[7235]877 + crossproduct(rho, ry);
[7287]878
[7235]879 // Resulting Effect
880 // ----------------
[7287]881 double alpha = DotProduct(dipSat,dipRec) /
[7235]882 (dipSat.norm_Frobenius() * dipRec.norm_Frobenius());
[7287]883
[7235]884 if (alpha > 1.0) alpha = 1.0;
885 if (alpha < -1.0) alpha = -1.0;
[7287]886
[7235]887 double dphi = acos(alpha) / 2.0 / M_PI; // in cycles
[7287]888
[7235]889 if ( DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0 ) {
890 dphi = -dphi;
891 }
892
893 _windUpSum[prn] = floor(_windUpSum[prn] - dphi + 0.5) + dphi;
894 }
895
[7287]896 return _windUpSum[prn];
[7235]897}
898
[7287]899//
[7235]900///////////////////////////////////////////////////////////////////////////
901void t_pppFilter::cmpEle(t_satData* satData) {
902 Tracer tracer("t_pppFilter::cmpEle");
903 ColumnVector rr = satData->xx - _xcBanc.Rows(1,3);
904 double rho = rr.norm_Frobenius();
905
906 double neu[3];
907 xyz2neu(_ellBanc.data(), rr.data(), neu);
908
909 satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
910 if (neu[2] < 0) {
911 satData->eleSat *= -1.0;
912 }
913 satData->azSat = atan2(neu[1], neu[0]);
914}
915
[7287]916//
[7235]917///////////////////////////////////////////////////////////////////////////
918void t_pppFilter::addAmb(t_satData* satData) {
919 Tracer tracer("t_pppFilter::addAmb");
920 if (!OPT->ambLCs(satData->system()).size()){
921 return;
922 }
923 bool found = false;
924 for (int iPar = 1; iPar <= _params.size(); iPar++) {
[7287]925 if (_params[iPar-1]->type == t_pppParam::AMB_L3 &&
[7235]926 _params[iPar-1]->prn == satData->prn) {
927 found = true;
928 break;
929 }
930 }
931 if (!found) {
[7287]932 t_pppParam* par = new t_pppParam(t_pppParam::AMB_L3,
[7235]933 _params.size()+1, satData->prn);
934 _params.push_back(par);
935 par->xx = satData->L3 - cmpValue(satData, true);
936 }
937}
938
[7287]939//
[7235]940///////////////////////////////////////////////////////////////////////////
941void t_pppFilter::addObs(int iPhase, unsigned& iObs, t_satData* satData,
942 Matrix& AA, ColumnVector& ll, DiagonalMatrix& PP) {
943
944 Tracer tracer("t_pppFilter::addObs");
945
946 const double ELEWGHT = 20.0;
947 double ellWgtCoef = 1.0;
[7287]948 double eleD = satData->eleSat * 180.0 / M_PI;
[7235]949 if (eleD < ELEWGHT) {
950 ellWgtCoef = 1.5 - 0.5 / (ELEWGHT - 10.0) * (eleD - 10.0);
951 }
952
953 // Remember Observation Index
954 // --------------------------
955 ++iObs;
956 satData->obsIndex = iObs;
957
[9471]958 // Iono-free combination noise factor
959 // ----------------------------------
960 double ionFac = sqrt(pow(satData->lkA,2) + pow(satData->lkB,2));
961
[7235]962 // Phase Observations
963 // ------------------
964
965 if (iPhase == 1) {
[9471]966 double sigL3 = ionFac * ellWgtCoef * OPT->_sigmaL1;
[7235]967 if (satData->system() == 'R') {
968 sigL3 *= GLONASS_WEIGHT_FACTOR;
969 }
970 if (satData->system() == 'C') {
971 sigL3 *= BDS_WEIGHT_FACTOR;
972 }
[9471]973 satData->L3sig = sigL3;
974 ll(iObs) = satData->L3 - cmpValue(satData, true);
975 PP(iObs,iObs) = 1.0 / (sigL3 * sigL3);
[7235]976 for (int iPar = 1; iPar <= _params.size(); iPar++) {
977 if (_params[iPar-1]->type == t_pppParam::AMB_L3 &&
978 _params[iPar-1]->prn == satData->prn) {
979 ll(iObs) -= _params[iPar-1]->xx;
[7287]980 }
[7235]981 AA(iObs, iPar) = _params[iPar-1]->partial(satData, true);
982 }
983 }
984
985 // Code Observations
986 // -----------------
987 else {
[9471]988 double sigP3 = ionFac * ellWgtCoef * OPT->_sigmaC1;
989 if (satData->system() == 'R') {
990 sigP3 *= GLONASS_WEIGHT_FACTOR;
991 }
992 if (satData->system() == 'C') {
993 sigP3 *= BDS_WEIGHT_FACTOR;
994 }
995 satData->P3sig = sigP3;
[7235]996 ll(iObs) = satData->P3 - cmpValue(satData, false);
[9471]997 PP(iObs,iObs) = 1.0 / (sigP3 * sigP3);
[7235]998 for (int iPar = 1; iPar <= _params.size(); iPar++) {
999 AA(iObs, iPar) = _params[iPar-1]->partial(satData, false);
1000 }
1001 }
1002}
1003
[7287]1004//
[7235]1005///////////////////////////////////////////////////////////////////////////
[7287]1006QByteArray t_pppFilter::printRes(int iPhase, const ColumnVector& vv,
[7235]1007 const QMap<QString, t_satData*>& satDataMap) {
1008
1009 Tracer tracer("t_pppFilter::printRes");
1010
1011 ostringstream str;
1012 str.setf(ios::fixed);
1013 bool useObs;
1014 QMapIterator<QString, t_satData*> it(satDataMap);
1015 while (it.hasNext()) {
1016 it.next();
1017 t_satData* satData = it.value();
1018 (iPhase == 0) ? useObs = OPT->codeLCs(satData->system()).size() :
1019 useObs = OPT->ambLCs(satData->system()).size();
1020 if (satData->obsIndex != 0 && useObs) {
[7536]1021 str << _time.datestr() << "_" << _time.timestr(3)
[7235]1022 << " RES " << satData->prn.mid(0,3).toAscii().data()
1023 << (iPhase ? " L3 " : " P3 ")
1024 << setw(9) << setprecision(4) << vv(satData->obsIndex) << endl;
1025 }
1026 }
1027
1028 return QByteArray(str.str().c_str());
1029}
1030
[7287]1031//
[7235]1032///////////////////////////////////////////////////////////////////////////
1033void t_pppFilter::findMaxRes(const ColumnVector& vv,
1034 const QMap<QString, t_satData*>& satData,
[7287]1035 QString& prnGPS, QString& prnGlo,
1036 double& maxResGPS, double& maxResGlo) {
[7235]1037
1038 Tracer tracer("t_pppFilter::findMaxRes");
1039
1040 maxResGPS = 0.0;
1041 maxResGlo = 0.0;
1042
1043 QMapIterator<QString, t_satData*> it(satData);
1044 while (it.hasNext()) {
1045 it.next();
1046 t_satData* satData = it.value();
1047 if (satData->obsIndex != 0) {
1048 QString prn = satData->prn;
[7287]1049 if (prn[0] == 'R' || prn[0] == 'C') {
[7235]1050 if (fabs(vv(satData->obsIndex)) > maxResGlo) {
1051 maxResGlo = fabs(vv(satData->obsIndex));
1052 prnGlo = prn;
1053 }
1054 }
1055 else {
1056 if (fabs(vv(satData->obsIndex)) > maxResGPS) {
1057 maxResGPS = fabs(vv(satData->obsIndex));
1058 prnGPS = prn;
1059 }
1060 }
1061 }
1062 }
1063}
[7287]1064
[7235]1065// Update Step (private - loop over outliers)
1066////////////////////////////////////////////////////////////////////////////
1067t_irc t_pppFilter::update_p(t_epoData* epoData) {
1068
1069 Tracer tracer("t_pppFilter::update_p");
1070
1071 // Save Variance-Covariance Matrix, and Status Vector
1072 // --------------------------------------------------
1073 rememberState(epoData);
1074
1075 QString lastOutlierPrn;
1076
1077 // Try with all satellites, then with all minus one, etc.
1078 // ------------------------------------------------------
1079 while (selectSatellites(lastOutlierPrn, epoData->satData) == success) {
1080
1081 QByteArray strResCode;
1082 QByteArray strResPhase;
1083
1084 // Bancroft Solution
1085 // -----------------
1086 if (cmpBancroft(epoData) != success) {
1087 break;
1088 }
1089
1090 // First update using code observations, then phase observations
[7287]1091 // -------------------------------------------------------------
[7235]1092 bool usePhase = OPT->ambLCs('G').size() || OPT->ambLCs('R').size() ||
1093 OPT->ambLCs('E').size() || OPT->ambLCs('C').size() ;
1094
[7545]1095 char sys[] ={'G', 'R', 'E', 'C'};
1096
1097 bool satnumPrinted[] = {false, false, false, false};
1098
[7235]1099 for (int iPhase = 0; iPhase <= (usePhase ? 1 : 0); iPhase++) {
1100
1101 // Status Prediction
1102 // -----------------
1103 predict(iPhase, epoData);
[7287]1104
[7235]1105 // Create First-Design Matrix
1106 // --------------------------
1107 unsigned nPar = _params.size();
1108 unsigned nObs = 0;
1109 nObs = epoData->sizeAll();
1110 bool useObs = false;
1111 for (unsigned ii = 0; ii < sizeof(sys); ii++) {
1112 const char s = sys[ii];
1113 (iPhase == 0) ? useObs = OPT->codeLCs(s).size() : useObs = OPT->ambLCs(s).size();
1114 if (!useObs) {
1115 nObs -= epoData->sizeSys(s);
1116 }
[7536]1117 else {
[7545]1118 if (!satnumPrinted[ii]) {
1119 satnumPrinted[ii] = true;
[7544]1120 LOG << _time.datestr() << "_" << _time.timestr(3)
1121 << " SATNUM " << s << ' ' << right << setw(2)
1122 << epoData->sizeSys(s) << endl;
1123 }
[7536]1124 }
[7235]1125 }
[7287]1126
[7975]1127 if (int(nObs) < OPT->_minObs) {
[7852]1128 restoreState(epoData);
1129 return failure;
1130 }
1131
[7235]1132 // Prepare first-design Matrix, vector observed-computed
1133 // -----------------------------------------------------
1134 Matrix AA(nObs, nPar); // first design matrix
[7287]1135 ColumnVector ll(nObs); // terms observed-computed
[7235]1136 DiagonalMatrix PP(nObs); PP = 0.0;
[7287]1137
[7235]1138 unsigned iObs = 0;
1139 QMapIterator<QString, t_satData*> it(epoData->satData);
[7536]1140
[7235]1141 while (it.hasNext()) {
1142 it.next();
1143 t_satData* satData = it.value();
1144 QString prn = satData->prn;
1145 (iPhase == 0) ? useObs = OPT->codeLCs(satData->system()).size() :
1146 useObs = OPT->ambLCs(satData->system()).size();
1147 if (useObs) {
1148 addObs(iPhase, iObs, satData, AA, ll, PP);
1149 } else {
1150 satData->obsIndex = 0;
1151 }
1152 }
1153
1154 // Compute Filter Update
1155 // ---------------------
1156 ColumnVector dx(nPar); dx = 0.0;
1157 kalman(AA, ll, PP, _QQ, dx);
1158 ColumnVector vv = ll - AA * dx;
[7287]1159
[7235]1160 // Print Residuals
1161 // ---------------
[7287]1162 if (iPhase == 0) {
[7235]1163 strResCode = printRes(iPhase, vv, epoData->satData);
1164 }
1165 else {
1166 strResPhase = printRes(iPhase, vv, epoData->satData);
1167 }
1168
1169 // Check the residuals
1170 // -------------------
1171 lastOutlierPrn = outlierDetection(iPhase, vv, epoData->satData);
1172
1173 // No Outlier Detected
1174 // -------------------
1175 if (lastOutlierPrn.isEmpty()) {
1176
1177 QVectorIterator<t_pppParam*> itPar(_params);
1178 while (itPar.hasNext()) {
1179 t_pppParam* par = itPar.next();
1180 par->xx += dx(par->index);
1181 }
1182
1183 if (!usePhase || iPhase == 1) {
1184 if (_outlierGPS.size() > 0 || _outlierGlo.size() > 0) {
1185 LOG << "Neglected PRNs: ";
1186 if (!_outlierGPS.isEmpty()) {
1187 LOG << _outlierGPS.last().mid(0,3).toAscii().data() << ' ';
1188 }
1189 QStringListIterator itGlo(_outlierGlo);
1190 while (itGlo.hasNext()) {
1191 QString prn = itGlo.next();
1192 LOG << prn.mid(0,3).toAscii().data() << ' ';
1193 }
[7573]1194 LOG << endl;
[7235]1195 }
1196 LOG << strResCode.data() << strResPhase.data();
1197
1198 return success;
1199 }
1200 }
1201
1202 // Outlier Found
1203 // -------------
1204 else {
1205 restoreState(epoData);
1206 break;
1207 }
1208
1209 } // for iPhase
1210
1211 } // while selectSatellites
1212
1213 restoreState(epoData);
1214 return failure;
1215}
1216
[9471]1217// Remember Original State Vector and Variance-Covariance Matrix
[7235]1218////////////////////////////////////////////////////////////////////////////
1219void t_pppFilter::rememberState(t_epoData* epoData) {
1220
1221 _QQ_sav = _QQ;
1222
1223 QVectorIterator<t_pppParam*> itSav(_params_sav);
1224 while (itSav.hasNext()) {
1225 t_pppParam* par = itSav.next();
1226 delete par;
1227 }
1228 _params_sav.clear();
1229
1230 QVectorIterator<t_pppParam*> it(_params);
1231 while (it.hasNext()) {
1232 t_pppParam* par = it.next();
1233 _params_sav.push_back(new t_pppParam(*par));
1234 }
1235
1236 _epoData_sav->deepCopy(epoData);
1237}
1238
1239// Restore Original State Vector and Variance-Covariance Matrix
1240////////////////////////////////////////////////////////////////////////////
1241void t_pppFilter::restoreState(t_epoData* epoData) {
1242
1243 _QQ = _QQ_sav;
1244
1245 QVectorIterator<t_pppParam*> it(_params);
1246 while (it.hasNext()) {
1247 t_pppParam* par = it.next();
1248 delete par;
1249 }
1250 _params.clear();
1251
1252 QVectorIterator<t_pppParam*> itSav(_params_sav);
1253 while (itSav.hasNext()) {
1254 t_pppParam* par = itSav.next();
1255 _params.push_back(new t_pppParam(*par));
1256 }
1257
1258 epoData->deepCopy(_epoData_sav);
1259}
1260
[7287]1261//
[7235]1262////////////////////////////////////////////////////////////////////////////
[7287]1263t_irc t_pppFilter::selectSatellites(const QString& lastOutlierPrn,
[7235]1264 QMap<QString, t_satData*>& satData) {
1265
[7287]1266 // First Call
[7235]1267 // ----------
1268 if (lastOutlierPrn.isEmpty()) {
1269 _outlierGPS.clear();
1270 _outlierGlo.clear();
1271 return success;
1272 }
1273
1274 // Second and next trials
1275 // ----------------------
1276 else {
1277
[7287]1278 if (lastOutlierPrn[0] == 'R' || lastOutlierPrn[0] == 'C') {
[7235]1279 _outlierGlo << lastOutlierPrn;
1280 }
1281
1282 // Remove all Glonass Outliers
1283 // ---------------------------
1284 QStringListIterator it(_outlierGlo);
1285 while (it.hasNext()) {
1286 QString prn = it.next();
1287 if (satData.contains(prn)) {
1288 delete satData.take(prn);
1289 }
1290 }
1291
[7287]1292 if (lastOutlierPrn[0] == 'R' || lastOutlierPrn[0] == 'C') {
[7235]1293 _outlierGPS.clear();
1294 return success;
1295 }
1296
1297 // GPS Outlier appeared for the first time - try to delete it
1298 // ----------------------------------------------------------
1299 if (_outlierGPS.indexOf(lastOutlierPrn) == -1) {
1300 _outlierGPS << lastOutlierPrn;
1301 if (satData.contains(lastOutlierPrn)) {
1302 delete satData.take(lastOutlierPrn);
1303 }
1304 return success;
1305 }
1306
1307 }
1308
1309 return failure;
1310}
1311
[7287]1312//
[7235]1313////////////////////////////////////////////////////////////////////////////
1314double lorentz(const ColumnVector& aa, const ColumnVector& bb) {
1315 return aa(1)*bb(1) + aa(2)*bb(2) + aa(3)*bb(3) - aa(4)*bb(4);
1316}
1317
[7287]1318//
[7235]1319////////////////////////////////////////////////////////////////////////////
1320void t_pppFilter::bancroft(const Matrix& BBpass, ColumnVector& pos) {
1321
1322 if (pos.Nrows() != 4) {
1323 pos.ReSize(4);
1324 }
1325 pos = 0.0;
1326
1327 for (int iter = 1; iter <= 2; iter++) {
1328 Matrix BB = BBpass;
1329 int mm = BB.Nrows();
1330 for (int ii = 1; ii <= mm; ii++) {
1331 double xx = BB(ii,1);
1332 double yy = BB(ii,2);
1333 double traveltime = 0.072;
1334 if (iter > 1) {
1335 double zz = BB(ii,3);
[7287]1336 double rho = sqrt( (xx-pos(1)) * (xx-pos(1)) +
1337 (yy-pos(2)) * (yy-pos(2)) +
[7235]1338 (zz-pos(3)) * (zz-pos(3)) );
1339 traveltime = rho / t_CST::c;
1340 }
1341 double angle = traveltime * t_CST::omega;
1342 double cosa = cos(angle);
1343 double sina = sin(angle);
1344 BB(ii,1) = cosa * xx + sina * yy;
1345 BB(ii,2) = -sina * xx + cosa * yy;
1346 }
[7287]1347
[7235]1348 Matrix BBB;
1349 if (mm > 4) {
1350 SymmetricMatrix hlp; hlp << BB.t() * BB;
1351 BBB = hlp.i() * BB.t();
1352 }
1353 else {
1354 BBB = BB.i();
1355 }
1356 ColumnVector ee(mm); ee = 1.0;
1357 ColumnVector alpha(mm); alpha = 0.0;
1358 for (int ii = 1; ii <= mm; ii++) {
[7287]1359 alpha(ii) = lorentz(BB.Row(ii).t(),BB.Row(ii).t())/2.0;
[7235]1360 }
1361 ColumnVector BBBe = BBB * ee;
1362 ColumnVector BBBalpha = BBB * alpha;
1363 double aa = lorentz(BBBe, BBBe);
1364 double bb = lorentz(BBBe, BBBalpha)-1;
1365 double cc = lorentz(BBBalpha, BBBalpha);
1366 double root = sqrt(bb*bb-aa*cc);
1367
[7287]1368 Matrix hlpPos(4,2);
[7235]1369 hlpPos.Column(1) = (-bb-root)/aa * BBBe + BBBalpha;
1370 hlpPos.Column(2) = (-bb+root)/aa * BBBe + BBBalpha;
1371
1372 ColumnVector omc(2);
1373 for (int pp = 1; pp <= 2; pp++) {
1374 hlpPos(4,pp) = -hlpPos(4,pp);
[7287]1375 omc(pp) = BB(1,4) -
[7235]1376 sqrt( (BB(1,1)-hlpPos(1,pp)) * (BB(1,1)-hlpPos(1,pp)) +
1377 (BB(1,2)-hlpPos(2,pp)) * (BB(1,2)-hlpPos(2,pp)) +
[7287]1378 (BB(1,3)-hlpPos(3,pp)) * (BB(1,3)-hlpPos(3,pp)) ) -
[7235]1379 hlpPos(4,pp);
1380 }
1381 if ( fabs(omc(1)) > fabs(omc(2)) ) {
1382 pos = hlpPos.Column(2);
1383 }
1384 else {
1385 pos = hlpPos.Column(1);
1386 }
1387 }
1388}
1389
[7287]1390//
[7235]1391////////////////////////////////////////////////////////////////////////////
1392void t_pppFilter::cmpDOP(t_epoData* epoData) {
1393
1394 Tracer tracer("t_pppFilter::cmpDOP");
1395
1396 _numSat = 0;
[7933]1397 _hDop = 0.0;
[7235]1398
1399 if (_params.size() < 4) {
1400 return;
1401 }
1402
1403 const unsigned numPar = 4;
1404 Matrix AA(epoData->sizeAll(), numPar);
1405 QMapIterator<QString, t_satData*> it(epoData->satData);
1406 while (it.hasNext()) {
1407 it.next();
1408 t_satData* satData = it.value();
1409 _numSat += 1;
1410 for (unsigned iPar = 0; iPar < numPar; iPar++) {
1411 AA[_numSat-1][iPar] = _params[iPar]->partial(satData, false);
1412 }
1413 }
1414 if (_numSat < 4) {
1415 return;
1416 }
1417 AA = AA.Rows(1, _numSat);
[7287]1418 SymmetricMatrix NN; NN << AA.t() * AA;
[7235]1419 SymmetricMatrix QQ = NN.i();
[7287]1420
[7933]1421 _hDop = sqrt(QQ(1,1) + QQ(2,2));
[7235]1422}
Note: See TracBrowser for help on using the repository browser.