/// \ingroup newmat ///@{ /// \file jacobi.cpp /// Eigen value decomposition using Jacobi method. // Copyright (C) 1991,2,3,4: R B Davies //#define WANT_STREAM #define WANT_MATH #include "include.h" #include "newmatap.h" #include "precisio.h" #include "newmatrm.h" #ifdef use_namespace namespace NEWMAT { #endif #ifdef DO_REPORT #define REPORT { static ExeCounter ExeCount(__LINE__,18); ++ExeCount; } #else #define REPORT {} #endif void Jacobi(const SymmetricMatrix& X, DiagonalMatrix& D, SymmetricMatrix& A, Matrix& V, bool eivec) { Real epsilon = FloatingPointPrecision::Epsilon(); Tracer et("Jacobi"); REPORT int n = X.Nrows(); DiagonalMatrix B(n), Z(n); D.resize(n); A = X; if (eivec) { REPORT V.resize(n,n); D = 1.0; V = D; } B << A; D = B; Z = 0.0; A.Inject(Z); bool converged = false; for (int i=1; i<=50; i++) { Real sm=0.0; Real* a = A.Store(); int p = A.Storage(); while (p--) sm += fabs(*a++); // have previously zeroed diags if (sm==0.0) { REPORT converged = true; break; } Real tresh = (i<4) ? 0.2 * sm / square(n) : 0.0; a = A.Store(); for (p = 0; p < n; p++) { Real* ap1 = a + (p*(p+1))/2; Real& zp = Z.element(p); Real& dp = D.element(p); for (int q = p+1; q < n; q++) { Real* ap = ap1; Real* aq = a + (q*(q+1))/2; Real& zq = Z.element(q); Real& dq = D.element(q); Real& apq = A.element(q,p); Real g = 100 * fabs(apq); Real adp = fabs(dp); Real adq = fabs(dq); if (i>4 && g < epsilon*adp && g < epsilon*adq) { REPORT apq = 0.0; } else if (fabs(apq) > tresh) { REPORT Real t; Real h = dq - dp; Real ah = fabs(h); if (g < epsilon*ah) { REPORT t = apq / h; } else { REPORT Real theta = 0.5 * h / apq; t = 1.0 / ( fabs(theta) + sqrt(1.0 + square(theta)) ); if (theta<0.0) { REPORT t = -t; } } Real c = 1.0 / sqrt(1.0 + square(t)); Real s = t * c; Real tau = s / (1.0 + c); h = t * apq; zp -= h; zq += h; dp -= h; dq += h; apq = 0.0; int j = p; while (j--) { g = *ap; h = *aq; *ap++ = g-s*(h+g*tau); *aq++ = h+s*(g-h*tau); } int ip = p+1; j = q-ip; ap += ip++; aq++; while (j--) { g = *ap; h = *aq; *ap = g-s*(h+g*tau); *aq++ = h+s*(g-h*tau); ap += ip++; } if (q < n-1) // last loop is non-empty { int iq = q+1; j = n-iq; ap += ip++; aq += iq++; for (;;) { g = *ap; h = *aq; *ap = g-s*(h+g*tau); *aq = h+s*(g-h*tau); if (!(--j)) break; ap += ip++; aq += iq++; } } if (eivec) { REPORT RectMatrixCol VP(V,p); RectMatrixCol VQ(V,q); Rotate(VP, VQ, tau, s); } } } } B = B + Z; D = B; Z = 0.0; } if (!converged) Throw(ConvergenceException(X)); if (eivec) SortSV(D, V, true); else SortAscending(D); } void Jacobi(const SymmetricMatrix& X, DiagonalMatrix& D) { REPORT SymmetricMatrix A; Matrix V; Jacobi(X,D,A,V,false); } void Jacobi(const SymmetricMatrix& X, DiagonalMatrix& D, SymmetricMatrix& A) { REPORT Matrix V; Jacobi(X,D,A,V,false); } void Jacobi(const SymmetricMatrix& X, DiagonalMatrix& D, Matrix& V) { REPORT SymmetricMatrix A; Jacobi(X,D,A,V,true); } #ifdef use_namespace } #endif ///@}