Configuration Examples BNC comes with a number of configuration examples which can be used on all operating systems. You may use a statically linked BNC executable to run the configuration examples. Configuration 'PPPGoogleMaps.bnc' is an exception from this because it requires a shared library BNC build. If not already done then copy the complete directory 'Example_Configs' to you disc. It contains sub-directories 'Input' and 'Output'. There are several ways to start BNC using one of the example configurations: * On graphical systems (except for Mac systems) you may use the computer mouse to 'drag' a configuration file icon and 'drop' it on top of BNC's program icon. * On non-graphical systems you may start BNC using a command line with the following option for a configuration file (example for Windows systems): bnc.exe --conf --nw Although it's not a must, we suggest that you always create BNC configuration files with the file name extension '.bnc'. We furthermore suggest for convenience reasons that you configure your system to automatically start BNC when you double-click a file with the file name extension '.bnc'. The following describes what to do on Windows systems to associate the BNC program to such configuration files: 1. Right-click a file that has the extension '.bnc' and then click 'Open'. If the 'Open' command is not available, click 'Open With' or double-click the file. 2. Windows displays a dialog box that says that the system cannot open this file. The dialog box offers several options for selecting a program. 3. Click 'Select the program from a list', and then click 'OK'. 4. The 'Open With' dialog box is displayed. Click 'Browse', locate and then click the BNC program, and then click 'Open'. 5. Click to select the 'Always use the selected program to open this kind of file' check box. 6. Click 'OK'. Some of the presented example configuration files contain a user ID 'Example' with a password 'Configs' for accessing a few GNSS streams from public Ntrip Broadcasters. This generic account is arranged for convenience reasons only. Please be so kind as to replace the generic account details as well as the place holders 'User' and 'Pass' by the personal user ID and password you receive following an online registration through http://register.rtcm-ntrip.org. Note that the account for an Ntrip Broadcaster is usually limited to pulling a specified maximum number of streams at the same time. As running some of the example configurations requires pulling several streams, it is suggested to make sure that you don't exceed your account's limits. Make also sure that sub-directories 'Input' and 'Output' which are part of the example configurations exist on your system or adjust the affected example configuration options according to your needs. Some BNC options require antenna phase center variations as made available from IGS through so-called ANTEX files at ftp://igs.org/pub/station/general. An example ANTEX file 'igs08.atx' is part of the BNC package for convenience. The example configurations assume that no proxy protects your BNC host. Should a proxy be operated in front of BNC then you need to introduce its IP and port in the 'Network' tab of the example configurations. You should be able to run all configuration examples without changing their options. However, configurations 'Upload.bnc' and 'UploadPPP.bnc' are exceptions because they require an input stream from a connected GNSS network engine. 1. File 'RinexObs.bnc' The purpose of this configuration is showing how to convert RTCM streams to RINEX. The configuration pulls two streams from Ntrip Broadcasters using Ntrip version 2 to generate 15min 1Hz RINEX Version 3 observation files. Note that network option 'Ignore SSL authorization errors' is set in order to allow pulling RINEX skeleton files via HTTPS when necessary. See http://igs.bkg.bund.de/ntrip/observations for observation stream resources. 2. File 'RinexEph.bnc' The purpose of this configuration is showing how to convert a RTCM stream carrying navigation messages to RINEX Navigation files. The configuration pulls a RTCM Version 3 stream with Broadcast Ephemeris coming from the real-time EUREF, IGS and M-GEX networks. It saves hourly RINEX Version 3 Navigation files. See http://igs.bkg.bund.de/ntrip/ephemeris for further real-time Broadcast Ephemeris resources. 3. File 'BrdcCorr.bnc' The purpose of this configuration is to save Broadcast Corrections from RTCM SSR messages in a plain ASCII format as hourly files. Depending on the Broadcast Corrections stream the file may contain orbit and clock corrections as well as code and phase biases. Information on correction streams from IGS and EUREF resources is available from http://igs.bkg.bund.de/ntrip/orbits. 4. File 'RinexConcat.bnc' The purpose of this configuration is to concatenate RINEX Version 3 files to produce a concatenated file and edit the marker name in the file header. The sampling interval is set to 30 seconds. See section 'RINEX Editing & QC' in the documentation for examples on how to call BNC from command line in 'no window' mode for RINEX file editing, concatenation and quality checks. 5. File 'RinexQC.bnc' The purpose of this configuration is to check the quality of a RINEX Version 3 file through a multipath analysis. The results is saved in disk in terms of a plot in PNG format. See section 'RINEX Editing & QC' in the documentation for examples on how to call BNC from command line in 'no window' mode for RINEX file editing, concatenation and quality checks. 6. File 'RTK.bnc' The purpose of this configuration is to feed a serial connected receiver with observations from a reference station for conventional RTK. The stream is scanned for RTCM messages. Message type numbers and latencies of incoming observation are reported in BNC's logfile. 7. File 'FeedEngine.bnc' The purpose of this configuration is to feed a real-time GNSS engine with observations from a remote reference stations. The configuration pulls a single stream from an NTRIP Broadcasters. It would of course be possible to pull several streams from different casters. Incoming observations are decoded, synchronized and output through a local IP port and saved into a file. Failure and recovery thresholds are specified to inform about outages. 8. File 'PPP.bnc' The purpose of this configuration is Precise Point Positioning from observations of a rover receiver. The configuration reads RTCM Version 3 observations, a Broadcast Ephemeris stream and a stream with Broadcast Corrections. Positions are saved in the logfile. 9. File 'PPPNet.bnc' The purpose of this configuration is to demonstrate siumultaneous Precise Point Positioning for several rovers or several receivers from a network of reference stations in one BNC job. The possible maximum number of PPP solutions per job depends on the processing power of the hosting computer. This example configuration reads two RTCM Version 3 observation streams, a Broadcast Ephemeris stream and a stream with Broadcast Corrections. PPP Results for the two stations are saved in PPP logfiles. 10. File 'PPPQuickStart.bnc' The purpose of this configuration is Precise Point Positioning in Quick-Start mode from observations of a static receiver with precisely known position. The configuration reads RTCM Version 3 observations, Broadcast Corrections and a Broadcast Ephemeris stream. Positions are saved in NMEA format on disc. Positions are also output through IP port for real-time visualization with tools like RTKPLOT. Positions are also saved in the logfile. 11. File 'PPPPostProc.bnc' The purpose of this configuration is Precise Point Positioning in Post Processing mode. BNC reads a RINEX Observation and a RINEX Version 3 Navigation files and a Broadcast Corrections file. PPP processing options are set to support the Quick-Start mode. The output is saved in a specific Post Processing logfile and contains the coordinates derived over time following the implemented PPP filter algorithm. 12. File 'PPPGoogleMaps.bnc' The purpose of this configuration is to track BNC's point positioning solution using Google Maps or Open StreetMap as background. BNC reads a RINEX Observation file and a RINEX Navigation file to carry out a 'Standard Point Positioning' solution in post-processing mode. Although this is not a real-time application it requires the BNC host to be connected to the Internet. Specify a computation speed, then hit button 'Open Map' to open the track map, then hit 'Start' to visualize receiver positions on top of GM/OSM maps. 13. File 'SPPQuickStartGal.bnc' The purpose of this configuration is Single Point Positioning in Quick-Start mode from observations of a static receiver with precisely known position. The configuration uses GPS, GLONASS and Galileo observations and a Broadcast Ephemeris stream. 14. File 'SaveSp3.bnc' The purpose of this configuration is to produce SP3 files from a Broadcast Ephemeris stream and a Broadcast Corrections stream. The Broadcast Corrections stream is formally introduced in BNC's 'Combine Corrections' table. Note that producing SP3 requires an ANTEX file because SP3 file contents should be referred to CoM. 15. File 'Sp3ETRF2000PPP.bnc' The purpose of this configuration is to produce SP3 files from a Broadcast Ephemeris stream and a stream carrying ETRF2000 Broadcast Corrections. The Broadcast Corrections stream is formally introduced in BNC's 'Combine Corrections' table. This leads to an SP3 file containing orbits referred also to ETRF2000. Pulling in addition observations from a reference station at precisely known ETRF2000 position allows comparing an 'INTERNAL' PPP solution with ETRF2000 reference coordinates. 16. File 'Upload.bnc' The purpose of this configuration is to upload orbits and clocks from a real-time GNSS engine to an NTRIP Broadcaster. For that the configuration reads precise orbits and clocks in RTNET format. It also reads a stream carrying Broadcast Ephemeris. BNC converts the orbits and clocks into Broadcast Corrections and encodes them in RTCM Version 3 SSR messages to upload them to an NTRIP Broadcaster. The Broadcast Corrections stream is referred to satellite Antenna Phase Center (APC) and IGS08. Orbits are saved on disk in SP3 format and clocks in Clock RINEX format. 17. File 'UploadPPP.bnc' This configuration equals the 'Upload.bnc' configuration. However, the Broadcast Corrections are in addition used for an 'INTERNAL' PPP solution based on observations from a static reference station with known precise coordinates. This allows a continuous quality check of the Broadcast Corrections through observing coordinate displacements. 18. File 'Combi.bnc' The purpose of this configuration is to pull several streams carrying Broadcast Corrections and a Broadcast Ephemeris stream from an NTRIP Broadcaster to produce a combined Broadcast Corrections stream. BNC encodes the combination product in RTCM Version 3 SSR messages and uploads that to an Ntrip Broadcaster. The Broadcast Corrections stream is not referred to satellite Center of Mass (CoM). It is referred to IGS08. Orbits are saved in SP3 format and clocks in Clock RINEX format. 19. File 'CombiPPP.bnc' This configuration equals the 'Combi.bnc' configuration. However, the combined Broadcast Corrections are in addition used for an 'INTERNAL' PPP solutions based on observations from a static reference station with known precise coordinates. This allows a continuous quality check of the combination product through observing coordinate displacements. 20. File 'UploadEph.bnc' The purpose of this configuration is to pull a number of streams from reference stations to get hold of contained Broadcast Ephemeris messages. These are encoded then in a RTCM Version 3 stream which only provides Broadcast Ephemeris with an update rate of 5 seconds. 21. File 'CompareSp3.bnc' The purpose of this configuration is to compare two SP3 files to calculate RMS values for orbit and clock differences. GPS satellite G05 and GLONASS satellite R18 are excluded from this comparison. Comparison results are saved in a logfile. 22. File 'Empty.bnc' The purpose of this example is to provide an empty configuration file for BNC which only contains the default settings. Georg Weber, BKG Frankfurt, August 2015 igs-ip@bkg.bund.de