Changeset 5607 in ntrip
- Timestamp:
- Jan 22, 2014, 11:55:39 AM (11 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/BNC/txt/frankfurt.tex
r5606 r5607 7 7 \usepackage{longtable} 8 8 \usepackage{tabu} 9 \usepackage{subeqnar} 9 10 10 11 \newcommand{\ul}{\underline} … … 15 16 \newcommand{\bea}{\begin{eqnarray}} 16 17 \newcommand{\eea}{\end{eqnarray}} 17 \newcommand{\bsea}{\begin{subeqnarray }}18 \newcommand{\esea}{\end{subeqnarray }}18 \newcommand{\bsea}{\begin{subeqnarray*}} 19 \newcommand{\esea}{\end{subeqnarray*}} 19 20 \newcommand{\mb}[1]{\mbox{#1}} 20 21 \newcommand{\mc}[3]{\multicolumn{#1}{#2}{#3}} … … 189 190 \end{frame} 190 191 192 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 193 194 \begin{frame} 195 \frametitle{Kalman Filter} 196 197 \begin{small} 198 199 State vectors $\bmm{x}$ at two subsequent epochs are 200 related to each other by the following linear equation: 201 \bdm 202 \bmm{x}(n) = \bmm{\Phi}\; \bmm{x}(n-1) + \bmm{\Gamma}\;\bmm{w}(n)~, 203 \edm 204 where $\Phi$ and $\Gamma$ are known matrices and {\em white noise} $\bmm{w}(n)$ is a random 205 vector with the following statistical properties: 206 \bsea 207 E(\bmm{w}) & = & \bmm{0} \\ 208 E(\bmm{w}(n)\;\bmm{w}^T(m)) & = & \bmm{0} ~~ \mbox{for $m \neq n$} \\ 209 E(\bmm{w}(n)\;\bmm{w^T}(n)) & = & \bm{Q}_s(n) ~. 210 \esea 211 212 Observations $\bmm{l}(n)$ and the state vector $\bmm{x}(n)$ are related to 213 each other by the linearized {\em observation equations} of form 214 \bdm \label{eq:KF:obseqn} 215 \bmm{l}(n) = \bm{A}\;\bmm{x}(n) + \bmm{v}(n) ~ , 216 \edm 217 where $\bm{A}$ is a known matrix (the so-called {\em first-design matrix}) and 218 $\bmm{v}(n)$ is a vector of random errors with the following properties: 219 \bsea\label{eq:KF:resid} 220 E(\bmm{v}) & = & \bmm{0} \\ 221 E(\bmm{v}(n)\;\bmm{v}^T(m)) & = & \bmm{0} ~~ \mbox{for $m \neq n$} \\ 222 E(\bmm{v}(n)\;\bmm{v^T}(n)) & = & \bm{Q}_l(n) ~. 223 \esea 224 225 \end{small} 226 227 \end{frame} 228 229 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 230 231 \begin{frame} 232 \frametitle{Classical KF Form} 233 234 Minimum Mean Square Error (MMSE) estimate $\widehat{\bmm{x}}(n)$ of vector 235 $\bmm{x}(n)$ meets the condition 236 $E\left((\bmm{x} - \widehat{\bmm{x}})(\bmm{x} - \widehat{\bmm{x}})^T\right) = 237 \mbox{min}$ and is given by 238 \begin{subeqnarray}\label{eq:KF:prediction} 239 \widehat{\bmm{x}}^-(n) & = & \bmm{\Phi} \widehat{\bmm{x}}(n-1) \\ 240 \bm{Q}^-(n) & = & \bmm{\Phi} \bm{Q}(n-1) \bmm{\Phi}^T + 241 \bmm{\Gamma} \bm{Q}_s(n) \bmm{\Gamma}^T 242 \end{subeqnarray} 243 \begin{subeqnarray}\label{eq:KF:update} 244 \widehat{\bmm{x}}(n) & = & \widehat{\bmm{x}}^-(n) + 245 \bm{K}\left(\bmm{l} - 246 \bm{A}\widehat{\bmm{x}}(n-1)\right) \\ 247 \bm{Q}(n) & = & \bm{Q}^-(n) - \bm{K}\bm{A}\bm{Q}^-(n) ~, 248 \end{subeqnarray} 249 where 250 \bdm \label{eq:KF:KandH} 251 \bm{K} = \bm{Q}^-(n)\bm{A}^T\bm{H}^{-1}, \quad 252 \bm{H} = \bm{Q}_l(n) + \bm{A}\bm{Q}^-(n)\bm{A}^T ~. 253 \edm 254 Equations (\ref{eq:KF:prediction}) are called {\em prediction}, 255 equations (\ref{eq:KF:update}) are called {\em update} step of Kalman filter. 256 257 \end{frame} 258 259 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 260 261 \begin{frame} 262 \frametitle{Square-Root Filter} \label{sec:SRF} 263 \begin{small} 264 Algorithms based on equations (\ref{eq:KF:prediction}) and 265 (\ref{eq:KF:update}) may suffer from numerical instabilities that are primarily 266 caused by the subtraction in (\ref{eq:KF:update}b). This deficiency may be 267 overcome by the so-called {\em square-root} formulation of the Kalman filter 268 that is based on the so-called {\em QR-Decomposition}. Assuming the 269 Cholesky decompositions 270 \be \label{eq:SRF:defsym} 271 \bm{Q}(n) = \bm{S}^{T} \bm{S} , \quad 272 \bm{Q}_l(n) = \bm{S}^T_l \bm{S}_l, \quad 273 \bm{Q}^-(n) = \bm{S}^{-T}\bm{S}^- 274 \ee 275 we can create the following block matrix and its QR-Decomposition: 276 \be \label{eq:SRF:main} 277 \left(\begin{array}{ll} 278 \bm{S}_l & \bm{0} \\ 279 \bm{S}^-\bm{A}^T & \bm{S}^- 280 \end{array}\right) 281 = 282 N \left(\begin{array}{cc} 283 \bm{X} & \bm{Y} \\ 284 \bm{0} & \bm{Z} 285 \end{array}\right) ~ . 286 \ee 287 It can be easily verified that 288 \bsea\label{eq:SRF:HK} 289 \bm{H} & = & \bm{X}^T\bm{X} \\ 290 \bm{K}^T & = & \bm{X}^{-1}\bm{Y}\\ 291 \bm{S} & = & \bm{Z} \\ 292 \bm{Q}(n) & = & \bm{Z}^T\bm{Z} ~ . 293 \esea 294 State vector $\widehat{\bmm{x}}(n)$ is computed in a usual way using the 295 equation (\ref{eq:KF:update}a). 296 \end{small} 297 \end{frame} 298 191 299 \end{document}
Note:
See TracChangeset
for help on using the changeset viewer.