1 |
|
---|
2 | #include <math.h>
|
---|
3 |
|
---|
4 | #include "utils.h"
|
---|
5 |
|
---|
6 | using namespace std;
|
---|
7 | using namespace GnssCenter;
|
---|
8 |
|
---|
9 | // Rectangular Coordinates -> Ellipsoidal Coordinates
|
---|
10 | ////////////////////////////////////////////////////////////////////////////
|
---|
11 | t_CST::t_irc t_utils::xyz2ell(const double* XYZ, double* Ell) {
|
---|
12 |
|
---|
13 | const double bell = t_CST::aell*(1.0-1.0/t_CST::fInv) ;
|
---|
14 | const double e2 = (t_CST::aell*t_CST::aell-bell*bell)/(t_CST::aell*t_CST::aell) ;
|
---|
15 | const double e2c = (t_CST::aell*t_CST::aell-bell*bell)/(bell*bell) ;
|
---|
16 |
|
---|
17 | double nn, ss, zps, hOld, phiOld, theta, sin3, cos3;
|
---|
18 |
|
---|
19 | ss = sqrt(XYZ[0]*XYZ[0]+XYZ[1]*XYZ[1]) ;
|
---|
20 | zps = XYZ[2]/ss ;
|
---|
21 | theta = atan( (XYZ[2]*t_CST::aell) / (ss*bell) );
|
---|
22 | sin3 = sin(theta) * sin(theta) * sin(theta);
|
---|
23 | cos3 = cos(theta) * cos(theta) * cos(theta);
|
---|
24 |
|
---|
25 | // Closed formula
|
---|
26 | Ell[0] = atan( (XYZ[2] + e2c * bell * sin3) / (ss - e2 * t_CST::aell * cos3) );
|
---|
27 | Ell[1] = atan2(XYZ[1],XYZ[0]) ;
|
---|
28 | nn = t_CST::aell/sqrt(1.0-e2*sin(Ell[0])*sin(Ell[0])) ;
|
---|
29 | Ell[2] = ss / cos(Ell[0]) - nn;
|
---|
30 |
|
---|
31 | const int MAXITER = 100;
|
---|
32 | for (int ii = 1; ii <= MAXITER; ii++) {
|
---|
33 | nn = t_CST::aell/sqrt(1.0-e2*sin(Ell[0])*sin(Ell[0])) ;
|
---|
34 | hOld = Ell[2] ;
|
---|
35 | phiOld = Ell[0] ;
|
---|
36 | Ell[2] = ss/cos(Ell[0])-nn ;
|
---|
37 | Ell[0] = atan(zps/(1.0-e2*nn/(nn+Ell[2]))) ;
|
---|
38 | if ( fabs(phiOld-Ell[0]) <= 1.0e-11 && fabs(hOld-Ell[2]) <= 1.0e-5 ) {
|
---|
39 | return t_CST::success;
|
---|
40 | }
|
---|
41 | }
|
---|
42 |
|
---|
43 | return t_CST::failure;
|
---|
44 | }
|
---|
45 |
|
---|
46 | // Rectangular Coordinates -> North, East, Up Components
|
---|
47 | ////////////////////////////////////////////////////////////////////////////
|
---|
48 | void t_utils::xyz2neu(const double* Ell, const double* xyz, double* neu) {
|
---|
49 |
|
---|
50 | double sinPhi = sin(Ell[0]);
|
---|
51 | double cosPhi = cos(Ell[0]);
|
---|
52 | double sinLam = sin(Ell[1]);
|
---|
53 | double cosLam = cos(Ell[1]);
|
---|
54 |
|
---|
55 | neu[0] = - sinPhi*cosLam * xyz[0]
|
---|
56 | - sinPhi*sinLam * xyz[1]
|
---|
57 | + cosPhi * xyz[2];
|
---|
58 |
|
---|
59 | neu[1] = - sinLam * xyz[0]
|
---|
60 | + cosLam * xyz[1];
|
---|
61 |
|
---|
62 | neu[2] = + cosPhi*cosLam * xyz[0]
|
---|
63 | + cosPhi*sinLam * xyz[1]
|
---|
64 | + sinPhi * xyz[2];
|
---|
65 | }
|
---|
66 |
|
---|
67 | // North, East, Up Components -> Rectangular Coordinates
|
---|
68 | ////////////////////////////////////////////////////////////////////////////
|
---|
69 | void t_utils::neu2xyz(const double* Ell, const double* neu, double* xyz) {
|
---|
70 |
|
---|
71 | double sinPhi = sin(Ell[0]);
|
---|
72 | double cosPhi = cos(Ell[0]);
|
---|
73 | double sinLam = sin(Ell[1]);
|
---|
74 | double cosLam = cos(Ell[1]);
|
---|
75 |
|
---|
76 | xyz[0] = - sinPhi*cosLam * neu[0]
|
---|
77 | - sinLam * neu[1]
|
---|
78 | + cosPhi*cosLam * neu[2];
|
---|
79 |
|
---|
80 | xyz[1] = - sinPhi*sinLam * neu[0]
|
---|
81 | + cosLam * neu[1]
|
---|
82 | + cosPhi*sinLam * neu[2];
|
---|
83 |
|
---|
84 | xyz[2] = + cosPhi * neu[0]
|
---|
85 | + sinPhi * neu[2];
|
---|
86 | }
|
---|
87 |
|
---|