/// \ingroup newmat ///@{ /// \file evalue.cpp /// Eigen-value decomposition (Householder method). // Copyright (C) 1991,2,3,4: R B Davies #define WANT_MATH #include "include.h" #include "newmatap.h" #include "newmatrm.h" #include "precisio.h" #ifdef use_namespace namespace NEWMAT { #endif #ifdef DO_REPORT #define REPORT { static ExeCounter ExeCount(__LINE__,17); ++ExeCount; } #else #define REPORT {} #endif static void tred2(const SymmetricMatrix& A, DiagonalMatrix& D, DiagonalMatrix& E, Matrix& Z) { Tracer et("Evalue(tred2)"); REPORT Real tol = FloatingPointPrecision::Minimum()/FloatingPointPrecision::Epsilon(); int n = A.Nrows(); Z.resize(n,n); Z.Inject(A); D.resize(n); E.resize(n); Real* z = Z.Store(); int i; for (i=n-1; i > 0; i--) // i=0 is excluded { Real f = Z.element(i,i-1); Real g = 0.0; int k = i-1; Real* zik = z + i*n; while (k--) g += square(*zik++); Real h = g + square(f); if (g <= tol) { REPORT E.element(i) = f; h = 0.0; } else { REPORT g = sign(-sqrt(h), f); E.element(i) = g; h -= f*g; Z.element(i,i-1) = f-g; f = 0.0; Real* zji = z + i; Real* zij = z + i*n; Real* ej = E.Store(); int j; for (j=0; j=l; i--) { Real ei = E.element(i); Real di = D.element(i); Real& ei1 = E.element(i+1); g = c * ei; h = c * p; if ( fabs(p) >= fabs(ei)) { REPORT c = ei / p; r = sqrt(c*c + 1.0); ei1 = s*p*r; s = c/r; c = 1.0/r; } else { REPORT c = p / ei; r = sqrt(c*c + 1.0); ei1 = s * ei * r; s = 1.0/r; c /= r; } p = c * di - s*g; D.element(i+1) = h + s * (c*g + s*di); Real* zki = z + i; Real* zki1 = zki + 1; int k = n; if (k) for (;;) { REPORT h = *zki1; *zki1 = s*(*zki) + c*h; *zki = c*(*zki) - s*h; if (!(--k)) break; zki += n; zki1 += n; } } el = s*p; dl = c*p; if (fabs(el) <= b) { REPORT; test = true; break; } } if (!test) Throw ( ConvergenceException(D) ); dl += f; } /* for (int i=0; i= 0; i--) { Real h = 0.0; Real f = - FloatingPointPrecision::Maximum(); Real* d = D.Store(); Real* a = A.Store() + (i*(i+1))/2; int k = i; while (k--) { f = *a++; *d++ = f; h += square(f); } if (h <= tol) { REPORT *(--ei) = 0.0; h = 0.0; } else { REPORT Real g = sign(-sqrt(h), f); *(--ei) = g; h -= f*g; f -= g; *(d-1) = f; *(a-1) = f; f = 0.0; Real* dj = D.Store(); Real* ej = E.Store(); int j; for (j = 0; j < i; j++) { Real* dk = D.Store(); Real* ak = A.Store()+(j*(j+1))/2; Real g = 0.0; k = j; while (k--) g += *ak++ * *dk++; k = i-j; int l = j; if (k) for (;;) { g += *ak * *dk++; if (!(--k)) break; ak += ++l; } g /= h; *ej++ = g; f += g * *dj++; } Real hh = f / (2 * h); Real* ak = A.Store(); dj = D.Store(); ej = E.Store(); for (j = 0; j < i; j++) { f = *dj++; g = *ej - hh * f; *ej++ = g; Real* dk = D.Store(); Real* ek = E.Store(); k = j+1; while (k--) { *ak++ -= (f * *ek++ + g * *dk++); } } } *d = *a; *a = h; } } static void tql1(DiagonalMatrix& D, DiagonalMatrix& E) { Tracer et("Evalue(tql1)"); REPORT Real eps = FloatingPointPrecision::Epsilon(); int n = D.Nrows(); int l; for (l=1; l=l; i--) { Real ei = E.element(i); Real di = D.element(i); Real& ei1 = E.element(i+1); g = c * ei; h = c * p; if ( fabs(p) >= fabs(ei)) { REPORT c = ei / p; r = sqrt(c*c + 1.0); ei1 = s*p*r; s = c/r; c = 1.0/r; } else { REPORT c = p / ei; r = sqrt(c*c + 1.0); ei1 = s * ei * r; s = 1.0/r; c /= r; } p = c * di - s*g; D.element(i+1) = h + s * (c*g + s*di); } el = s*p; dl = c*p; if (fabs(el) <= b) { REPORT test = true; break; } } if (!test) Throw ( ConvergenceException(D) ); Real p = dl + f; test = false; for (i=l; i>0; i--) { if (p < D.element(i-1)) { REPORT D.element(i) = D.element(i-1); } else { REPORT test = true; break; } } if (!test) i=0; D.element(i) = p; } } void eigenvalues(const SymmetricMatrix& A, DiagonalMatrix& D, Matrix& Z) { REPORT DiagonalMatrix E; tred2(A, D, E, Z); tql2(D, E, Z); SortSV(D,Z,true); } void eigenvalues(const SymmetricMatrix& X, DiagonalMatrix& D) { REPORT DiagonalMatrix E; SymmetricMatrix A; tred3(X,D,E,A); tql1(D,E); } void eigenvalues(const SymmetricMatrix& X, DiagonalMatrix& D, SymmetricMatrix& A) { REPORT DiagonalMatrix E; tred3(X,D,E,A); tql1(D,E); } #ifdef use_namespace } #endif ///@}