// Part of BNC, a utility for retrieving decoding and // converting GNSS data streams from NTRIP broadcasters. // // Copyright (C) 2007 // German Federal Agency for Cartography and Geodesy (BKG) // http://www.bkg.bund.de // Czech Technical University Prague, Department of Geodesy // http://www.fsv.cvut.cz // // Email: euref-ip@bkg.bund.de // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation, version 2. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. /* ------------------------------------------------------------------------- * BKG NTRIP Client * ------------------------------------------------------------------------- * * Class: t_astro, t_tides, t_tropo * * Purpose: Observation model * * Author: L. Mervart * * Created: 29-Jul-2014 * * Changes: * * -----------------------------------------------------------------------*/ #include #include "pppModel.h" using namespace BNC_PPP; using namespace std; Matrix t_astro::rotX(double Angle) { const double C = cos(Angle); const double S = sin(Angle); Matrix UU(3, 3); UU[0][0] = 1.0; UU[0][1] = 0.0; UU[0][2] = 0.0; UU[1][0] = 0.0; UU[1][1] = +C; UU[1][2] = +S; UU[2][0] = 0.0; UU[2][1] = -S; UU[2][2] = +C; return UU; } Matrix t_astro::rotY(double Angle) { const double C = cos(Angle); const double S = sin(Angle); Matrix UU(3, 3); UU[0][0] = +C; UU[0][1] = 0.0; UU[0][2] = -S; UU[1][0] = 0.0; UU[1][1] = 1.0; UU[1][2] = 0.0; UU[2][0] = +S; UU[2][1] = 0.0; UU[2][2] = +C; return UU; } Matrix t_astro::rotZ(double Angle) { const double C = cos(Angle); const double S = sin(Angle); Matrix UU(3, 3); UU[0][0] = +C; UU[0][1] = +S; UU[0][2] = 0.0; UU[1][0] = -S; UU[1][1] = +C; UU[1][2] = 0.0; UU[2][0] = 0.0; UU[2][1] = 0.0; UU[2][2] = 1.0; return UU; } // Greenwich Mean Sidereal Time /////////////////////////////////////////////////////////////////////////// double t_astro::GMST(double Mjd_UT1) { const double Secs = 86400.0; double Mjd_0 = floor(Mjd_UT1); double UT1 = Secs * (Mjd_UT1 - Mjd_0); double T_0 = (Mjd_0 - MJD_J2000) / 36525.0; double T = (Mjd_UT1 - MJD_J2000) / 36525.0; double gmst = 24110.54841 + 8640184.812866 * T_0 + 1.002737909350795 * UT1 + (0.093104 - 6.2e-6 * T) * T * T; return 2.0 * M_PI * Frac(gmst / Secs); } // Nutation Matrix /////////////////////////////////////////////////////////////////////////// Matrix t_astro::NutMatrix(double Mjd_TT) { const double T = (Mjd_TT - MJD_J2000) / 36525.0; double ls = 2.0 * M_PI * Frac(0.993133 + 99.997306 * T); double D = 2.0 * M_PI * Frac(0.827362 + 1236.853087 * T); double F = 2.0 * M_PI * Frac(0.259089 + 1342.227826 * T); double N = 2.0 * M_PI * Frac(0.347346 - 5.372447 * T); double dpsi = (-17.200 * sin(N) - 1.319 * sin(2 * (F - D + N)) - 0.227 * sin(2 * (F + N)) + 0.206 * sin(2 * N) + 0.143 * sin(ls)) / RHO_SEC; double deps = (+9.203 * cos(N) + 0.574 * cos(2 * (F - D + N)) + 0.098 * cos(2 * (F + N)) - 0.090 * cos(2 * N)) / RHO_SEC; double eps = 0.4090928 - 2.2696E-4 * T; return rotX(-eps - deps) * rotZ(-dpsi) * rotX(+eps); } // Precession Matrix /////////////////////////////////////////////////////////////////////////// Matrix t_astro::PrecMatrix(double Mjd_1, double Mjd_2) { const double T = (Mjd_1 - MJD_J2000) / 36525.0; const double dT = (Mjd_2 - Mjd_1) / 36525.0; double zeta = ((2306.2181 + (1.39656 - 0.000139 * T) * T) + ((0.30188 - 0.000344 * T) + 0.017998 * dT) * dT) * dT / RHO_SEC; double z = zeta + ((0.79280 + 0.000411 * T) + 0.000205 * dT) * dT * dT / RHO_SEC; double theta = ((2004.3109 - (0.85330 + 0.000217 * T) * T) - ((0.42665 + 0.000217 * T) + 0.041833 * dT) * dT) * dT / RHO_SEC; return rotZ(-z) * rotY(theta) * rotZ(-zeta); } // Sun's position /////////////////////////////////////////////////////////////////////////// ColumnVector t_astro::Sun(double Mjd_TT) { const double eps = 23.43929111 / RHO_DEG; const double T = (Mjd_TT - MJD_J2000) / 36525.0; double M = 2.0 * M_PI * Frac(0.9931267 + 99.9973583 * T); double L = 2.0 * M_PI * Frac(0.7859444 + M / 2.0 / M_PI + (6892.0 * sin(M) + 72.0 * sin(2.0 * M)) / 1296.0e3); double r = 149.619e9 - 2.499e9 * cos(M) - 0.021e9 * cos(2 * M); ColumnVector r_Sun(3); r_Sun << r * cos(L) << r * sin(L) << 0.0; r_Sun = rotX(-eps) * r_Sun; return rotZ(GMST(Mjd_TT)) * NutMatrix(Mjd_TT) * PrecMatrix(MJD_J2000, Mjd_TT) * r_Sun; } // Moon's position /////////////////////////////////////////////////////////////////////////// ColumnVector t_astro::Moon(double Mjd_TT) { const double eps = 23.43929111 / RHO_DEG; const double T = (Mjd_TT - MJD_J2000) / 36525.0; double L_0 = Frac(0.606433 + 1336.851344 * T); double l = 2.0 * M_PI * Frac(0.374897 + 1325.552410 * T); double lp = 2.0 * M_PI * Frac(0.993133 + 99.997361 * T); double D = 2.0 * M_PI * Frac(0.827361 + 1236.853086 * T); double F = 2.0 * M_PI * Frac(0.259086 + 1342.227825 * T); double dL = +22640 * sin(l) - 4586 * sin(l - 2 * D) + 2370 * sin(2 * D) + 769 * sin(2 * l) - 668 * sin(lp) - 412 * sin(2 * F) - 212 * sin(2 * l - 2 * D) - 206 * sin(l + lp - 2 * D) + 192 * sin(l + 2 * D) - 165 * sin(lp - 2 * D) - 125 * sin(D) - 110 * sin(l + lp) + 148 * sin(l - lp) - 55 * sin(2 * F - 2 * D); double L = 2.0 * M_PI * Frac(L_0 + dL / 1296.0e3); double S = F + (dL + 412 * sin(2 * F) + 541 * sin(lp)) / RHO_SEC; double h = F - 2 * D; double N = -526 * sin(h) + 44 * sin(l + h) - 31 * sin(-l + h) - 23 * sin(lp + h) + 11 * sin(-lp + h) - 25 * sin(-2 * l + F) + 21 * sin(-l + F); double B = (18520.0 * sin(S) + N) / RHO_SEC; double cosB = cos(B); double R = 385000e3 - 20905e3 * cos(l) - 3699e3 * cos(2 * D - l) - 2956e3 * cos(2 * D) - 570e3 * cos(2 * l) + 246e3 * cos(2 * l - 2 * D) - 205e3 * cos(lp - 2 * D) - 171e3 * cos(l + 2 * D) - 152e3 * cos(l + lp - 2 * D); ColumnVector r_Moon(3); r_Moon << R * cos(L) * cosB << R * sin(L) * cosB << R * sin(B); r_Moon = rotX(-eps) * r_Moon; return rotZ(GMST(Mjd_TT)) * NutMatrix(Mjd_TT) * PrecMatrix(MJD_J2000, Mjd_TT) * r_Moon; } // Tidal Correction //////////////////////////////////////////////////////////////////////////// ColumnVector t_tides::earth(const bncTime& time, const ColumnVector& xyz) { if (time.undef()) { ColumnVector dX(3); dX = 0.0; return dX; } double Mjd = time.mjd() + time.daysec() / 86400.0; if (Mjd != _lastMjd) { _lastMjd = Mjd; _xSun = t_astro::Sun(Mjd); _rSun = sqrt(DotProduct(_xSun, _xSun)); _xSun /= _rSun; _xMoon = t_astro::Moon(Mjd); _rMoon = sqrt(DotProduct(_xMoon, _xMoon)); _xMoon /= _rMoon; } double rRec = sqrt(DotProduct(xyz, xyz)); ColumnVector xyzUnit = xyz / rRec; // Love's Numbers // -------------- const double H2 = 0.6078; const double L2 = 0.0847; // Tidal Displacement // ------------------ double scSun = DotProduct(xyzUnit, _xSun); double scMoon = DotProduct(xyzUnit, _xMoon); double p2Sun = 3.0 * (H2 / 2.0 - L2) * scSun * scSun - H2 / 2.0; double p2Moon = 3.0 * (H2 / 2.0 - L2) * scMoon * scMoon - H2 / 2.0; double x2Sun = 3.0 * L2 * scSun; double x2Moon = 3.0 * L2 * scMoon; const double gmWGS = 398.6005e12; const double gms = 1.3271250e20; const double gmm = 4.9027890e12; double facSun = gms / gmWGS * (rRec * rRec * rRec * rRec) / (_rSun * _rSun * _rSun); double facMoon = gmm / gmWGS * (rRec * rRec * rRec * rRec) / (_rMoon * _rMoon * _rMoon); ColumnVector dX = facSun * (x2Sun * _xSun + p2Sun * xyzUnit) + facMoon * (x2Moon * _xMoon + p2Moon * xyzUnit); return dX; } // Constructor /////////////////////////////////////////////////////////////////////////// t_tides::t_tides() { _lastMjd = 0.0; _rSun = 0.0; _rMoon = 0.0; newBlqData = 0; } t_tides::~t_tides() { if (newBlqData) { delete newBlqData; } QMapIterator it(blqMap); while (it.hasNext()) { it.next(); delete it.value(); } } t_irc t_tides::readBlqFile(const char* fileName) { QFile inFile(fileName); inFile.open(QIODevice::ReadOnly | QIODevice::Text); QTextStream in(&inFile); int row = 0; QString site = QString(); while (!in.atEnd()) { QString line = in.readLine(); // skip empty lines and comments if (line.indexOf("$$") != -1) { continue; } line = line.trimmed(); QTextStream inLine(line.toLatin1(), QIODevice::ReadOnly); switch (row) { case 0: site = line; site = site.toUpper(); newBlqData = new t_blqData; newBlqData->amplitudes.ReSize(3, 11); newBlqData->phases.ReSize(3, 11); break; case 1: case 2: case 3: for (int ii = 0; ii < 11; ii++) { inLine >> newBlqData->amplitudes[row - 1][ii]; } break; case 4: case 5: for (int ii = 0; ii < 11; ii++) { inLine >> newBlqData->phases[row - 4][ii]; } break; case 6: for (int ii = 0; ii < 11; ii++) { inLine >> newBlqData->phases[row - 4][ii]; } if (newBlqData && !site.isEmpty()) { blqMap[site] = newBlqData; site = QString(); newBlqData = 0; } row = -1; break; } row++; } inFile.close(); return success; } ColumnVector t_tides::ocean(const bncTime& time, const ColumnVector& xyz, const std::string& station) { ColumnVector dX(3); dX = 0.0; if (time.undef()) { return dX; } QString stationQ = station.c_str(); if (blqMap.find(stationQ) == blqMap.end()) { return dX; } t_blqData* blqSet = blqMap[stationQ]; //printBlqSet(station, blqSet); // angular argument: see arg2.f from IERS Conventions software collection double speed[11] = {1.40519e-4, 1.45444e-4, 1.3788e-4, 1.45842e-4, 7.2921e-5, 6.7598e-5, 7.2523e-5, 6.4959e-5, 5.3234e-6, 2.6392e-6, 3.982e-7}; double angfac[4][11]; angfac[0][0] = 2.0; angfac[1][0] =-2.0; angfac[2][0] = 0.0; angfac[3][0] = 0.0; angfac[0][1] = 0.0; angfac[1][1] = 0.0; angfac[2][1] = 0.0; angfac[3][1] = 0.0; angfac[0][2] = 2.0; angfac[1][2] =-3.0; angfac[2][2] = 1.0; angfac[3][2] = 0.0; angfac[0][3] = 2.0; angfac[1][3] = 0.0; angfac[2][3] = 0.0; angfac[3][3] = 0.0; angfac[0][4] = 1.0; angfac[1][4] = 0.0; angfac[2][4] = 0.0; angfac[3][4] = .25; angfac[0][5] = 1.0; angfac[1][5] =-2.0; angfac[2][5] = 0.0; angfac[3][5] =-.25; angfac[0][6] =-1.0; angfac[1][6] = 0.0; angfac[2][6] = 0.0; angfac[3][6] =-.25; angfac[0][7] = 1.0; angfac[1][7] =-3.0; angfac[2][7] = 1.0; angfac[3][7] =-.25; angfac[0][8] = 0.0; angfac[1][8] = 2.0; angfac[2][8] = 0.0; angfac[3][8] = 0.0; angfac[0][9] = 0.0; angfac[1][9] = 1.0; angfac[2][9] =-1.0; angfac[3][9] = 0.0; angfac[0][10] = 2.0; angfac[1][10] = 0.0; angfac[2][10] = 0.0; angfac[3][10] = 0.0; double twopi = 6.283185307179586476925287e0; double dtr = 0.0174532925199; // fractional part of the day in seconds unsigned int year, month, day; time.civil_date(year, month, day); int iyear = year - 2000; QDateTime datTim = QDateTime::fromString(QString::fromStdString(time.datestr()), Qt::ISODate); int doy = datTim.date().dayOfYear(); double fday = time.daysec(); int icapd = doy + 365 * (iyear - 75) + ((iyear - 73) / 4); double capt = (icapd * 1.000000035 + 27392.500528) / 36525.0; // mean longitude of the sun at the beginning of the day double h0 = (279.69668e0 + (36000.768930485e0 + 3.03e-4 * capt) * capt) * dtr; // mean longitude of moon at the beginning of the day double s0 = (((1.9e-6 * capt - .001133e0) * capt + 481267.88314137e0) * capt + 270.434358e0) * dtr; // mean longitude of lunar perigee at the beginning of the day double p0 = (((-1.2e-5 * capt - .010325e0) * capt + 4069.0340329577e0) * capt + 334.329653e0) * dtr; // tidal angle arguments double angle[11]; for (int k = 0; k < 11; ++k) { angle[k] = speed[k] * fday + angfac[0][k] * h0 + angfac[1][k] * s0 + angfac[2][k] * p0 + angfac[3][k] * twopi; angle[k] = fmod(angle[k], twopi); if (angle[k] < 0.0) { angle[k] += twopi; } } // displacement by 11 constituents ColumnVector rwsSta(3); rwsSta = 0.0; // radial, west, south for (int rr = 0; rr < 3; rr++) { for (int cc = 0; cc < 11; cc++) { rwsSta[rr] += blqSet->amplitudes[rr][cc] * cos((angle[cc] - (blqSet->phases[rr][cc]/RHO_DEG))); } } // neu2xyz ColumnVector dneu(3); // neu dneu[0] = -rwsSta[2]; dneu[1] = -rwsSta[1]; dneu[2] = rwsSta[0]; double recEll[3]; xyz2ell(xyz.data(), recEll) ; neu2xyz(recEll, dneu.data(), dX.data()); return dX; } // Print //////////////////////////////////////////////////////////////////////////// void t_tides::printAllBlqSets() const { QMapIterator it(blqMap); while (it.hasNext()) { it.next(); t_blqData* blq = it.value(); QString site = it.key(); cout << site.toStdString().c_str() << "\n===============\n"; for (int rr = 0; rr < 3; rr++) { for (int cc = 0; cc < 11; cc++) { cout << blq->amplitudes[rr][cc] << " "; } cout << endl; } for (int rr = 0; rr < 3; rr++) { for (int cc = 0; cc < 11; cc++) { cout << blq->phases[rr][cc] << " "; } cout << endl; } } } // Print //////////////////////////////////////////////////////////////////////////// void t_tides::printBlqSet(const std::string& station, t_blqData* blq) { cout << station << endl; for (int rr = 0; rr < 3; rr++) { for (int cc = 0; cc < 11; cc++) { cout << blq->amplitudes[rr][cc] << " "; } cout << endl; } for (int rr = 0; rr < 3; rr++) { for (int cc = 0; cc < 11; cc++) { cout << blq->phases[rr][cc] << " "; } cout << endl; } } // Constructor /////////////////////////////////////////////////////////////////////////// t_windUp::t_windUp() { for (unsigned ii = 0; ii <= t_prn::MAXPRN; ii++) { sumWind[ii] = 0.0; lastEtime[ii] = 0.0; } } // Phase Wind-Up Correction /////////////////////////////////////////////////////////////////////////// double t_windUp::value(const bncTime& etime, const ColumnVector& rRec, t_prn prn, const ColumnVector& rSat, bool ssr, double yaw, const ColumnVector& vSat) { if (etime.mjddec() != lastEtime[prn.toInt()]) { // Unit Vector GPS Satellite --> Receiver // -------------------------------------- ColumnVector rho = rRec - rSat; rho /= rho.NormFrobenius(); // GPS Satellite unit Vectors sz, sy, sx // ------------------------------------- ColumnVector sHlp; if (!ssr) { sHlp = t_astro::Sun(etime.mjddec()); } else { ColumnVector Omega(3); Omega[0] = 0.0; Omega[1] = 0.0; Omega[2] = t_CST::omega; sHlp = vSat + crossproduct(Omega, rSat); } sHlp /= sHlp.NormFrobenius(); ColumnVector sz = -rSat / rSat.NormFrobenius(); ColumnVector sy = crossproduct(sz, sHlp); ColumnVector sx = crossproduct(sy, sz); if (ssr) { // Yaw angle consideration Matrix SXYZ(3, 3); SXYZ.Column(1) = sx; SXYZ.Column(2) = sy; SXYZ.Column(3) = sz; SXYZ = DotProduct(t_astro::rotZ(yaw), SXYZ); sx = SXYZ.Column(1); sy = SXYZ.Column(2); sz = SXYZ.Column(3); } // Effective Dipole of the GPS Satellite Antenna // --------------------------------------------- ColumnVector dipSat = sx - rho * DotProduct(rho, sx) - crossproduct(rho, sy); // Receiver unit Vectors rx, ry // ---------------------------- ColumnVector rx(3); ColumnVector ry(3); double recEll[3]; xyz2ell(rRec.data(), recEll); double neu[3]; neu[0] = 1.0; neu[1] = 0.0; neu[2] = 0.0; neu2xyz(recEll, neu, rx.data()); neu[0] = 0.0; neu[1] = -1.0; neu[2] = 0.0; neu2xyz(recEll, neu, ry.data()); // Effective Dipole of the Receiver Antenna // ---------------------------------------- ColumnVector dipRec = rx - rho * DotProduct(rho, rx) + crossproduct(rho, ry); // Resulting Effect // ---------------- double alpha = DotProduct(dipSat, dipRec) / (dipSat.NormFrobenius() * dipRec.NormFrobenius()); if (alpha > 1.0) alpha = 1.0; if (alpha < -1.0) alpha = -1.0; double dphi = acos(alpha) / 2.0 / M_PI; // in cycles if (DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0) { dphi = -dphi; } if (lastEtime[prn.toInt()] == 0.0) { sumWind[prn.toInt()] = dphi; } else { sumWind[prn.toInt()] = nint(sumWind[prn.toInt()] - dphi) + dphi; } lastEtime[prn.toInt()] = etime.mjddec(); } return sumWind[prn.toInt()]; } // Tropospheric Model (Saastamoinen) //////////////////////////////////////////////////////////////////////////// double t_tropo::delay_saast(const ColumnVector& xyz, double Ele) { Tracer tracer("bncModel::delay_saast"); if (xyz[0] == 0.0 && xyz[1] == 0.0 && xyz[2] == 0.0) { return 0.0; } double ell[3]; xyz2ell(xyz.data(), ell); double height = ell[2]; double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225); double TT = 18.0 - height * 0.0065 + 273.15; double hh = 50.0 * exp(-6.396e-4 * height); double ee = hh / 100.0 * exp(-37.2465 + 0.213166 * TT - 0.000256908 * TT * TT); double h_km = height / 1000.0; if (h_km < 0.0) h_km = 0.0; if (h_km > 5.0) h_km = 5.0; int ii = int(h_km + 1); if (ii > 5) ii = 5; double href = ii - 1; double bCor[6]; bCor[0] = 1.156; bCor[1] = 1.006; bCor[2] = 0.874; bCor[3] = 0.757; bCor[4] = 0.654; bCor[5] = 0.563; double BB = bCor[ii - 1] + (bCor[ii] - bCor[ii - 1]) * (h_km - href); double zen = M_PI / 2.0 - Ele; return (0.002277 / cos(zen)) * (pp + ((1255.0 / TT) + 0.05) * ee - BB * (tan(zen) * tan(zen))); } // Constructor /////////////////////////////////////////////////////////////////////////// t_iono::t_iono() { _psiPP = _phiPP = _lambdaPP = _lonS = 0.0; } t_iono::~t_iono() { } double t_iono::stec(const t_vTec* vTec, double signalPropagationTime, const ColumnVector& rSat, const bncTime& epochTime, const ColumnVector& xyzSta) { // Latitude, longitude, height are defined with respect to a spherical earth model // ------------------------------------------------------------------------------- ColumnVector geocSta(3); if (xyz2geoc(xyzSta.data(), geocSta.data()) != success) { return 0.0; } // satellite position rotated to the epoch of signal reception // ----------------------------------------------------------- ColumnVector xyzSat(3); double omegaZ = t_CST::omega * signalPropagationTime; xyzSat[0] = rSat[0] * cos(omegaZ) + rSat[1] * sin(omegaZ); xyzSat[1] = rSat[1] * cos(omegaZ) - rSat[0] * sin(omegaZ); xyzSat[2] = rSat[2]; // elevation and azimuth with respect to a spherical earth model // ------------------------------------------------------------- ColumnVector rhoV = xyzSat - xyzSta; double rho = rhoV.NormFrobenius(); ColumnVector neu(3); xyz2neu(geocSta.data(), rhoV.data(), neu.data()); double sphEle = acos(sqrt(neu[0] * neu[0] + neu[1] * neu[1]) / rho); if (neu[2] < 0) { sphEle *= -1.0; } double sphAzi = atan2(neu[1], neu[0]); double epoch = fmod(epochTime.gpssec(), 86400.0); double stec = 0.0; for (unsigned ii = 0; ii < vTec->_layers.size(); ii++) { piercePoint(vTec->_layers[ii]._height, epoch, geocSta.data(), sphEle, sphAzi); double vtec = vtecSingleLayerContribution(vTec->_layers[ii]); stec += vtec * sin(sphEle + _psiPP); } return stec; } double t_iono::vtecSingleLayerContribution(const t_vTecLayer& vTecLayer) { double vtec = 0.0; int N = vTecLayer._C.Nrows() - 1; int M = vTecLayer._C.Ncols() - 1; double fac; for (int n = 0; n <= N; n++) { for (int m = 0; m <= min(n, M); m++) { double pnm = associatedLegendreFunction(n, m, sin(_phiPP)); double a = factorial(n - m); double b = factorial(n + m); if (m == 0) { fac = sqrt(2.0 * n + 1); } else { fac = sqrt(2.0 * (2.0 * n + 1) * a / b); } pnm *= fac; double Cnm_mlambda = vTecLayer._C[n][m] * cos(m * _lonS); double Snm_mlambda = vTecLayer._S[n][m] * sin(m * _lonS); vtec += (Snm_mlambda + Cnm_mlambda) * pnm; } } if (vtec < 0.0) { vtec = 0.0; } return vtec; } void t_iono::piercePoint(double layerHeight, double epoch, const double* geocSta, double sphEle, double sphAzi) { double q = (t_CST::rgeoc + geocSta[2]) / (t_CST::rgeoc + layerHeight); _psiPP = M_PI / 2 - sphEle - asin(q * cos(sphEle)); _phiPP = asin( sin(geocSta[0]) * cos(_psiPP) + cos(geocSta[0]) * sin(_psiPP) * cos(sphAzi)); if (((geocSta[0] * 180.0 / M_PI > 0) && (tan(_psiPP) * cos(sphAzi) > tan(M_PI / 2 - geocSta[0]))) || ((geocSta[0] * 180.0 / M_PI < 0) && (-(tan(_psiPP) * cos(sphAzi)) > tan(M_PI / 2 + geocSta[0])))) { _lambdaPP = geocSta[1] + M_PI - asin((sin(_psiPP) * sin(sphAzi) / cos(_phiPP))); } else { _lambdaPP = geocSta[1] + asin((sin(_psiPP) * sin(sphAzi) / cos(_phiPP))); } _lonS = fmod((_lambdaPP + (epoch - 50400) * M_PI / 43200), 2 * M_PI); return; }