// Part of BNC, a utility for retrieving decoding and // converting GNSS data streams from NTRIP broadcasters. // // Copyright (C) 2007 // German Federal Agency for Cartography and Geodesy (BKG) // http://www.bkg.bund.de // Czech Technical University Prague, Department of Geodesy // http://www.fsv.cvut.cz // // Email: euref-ip@bkg.bund.de // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation, version 2. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. /* ------------------------------------------------------------------------- * BKG NTRIP Client * ------------------------------------------------------------------------- * * Class: t_astro, t_tides, t_tropo * * Purpose: Observation model * * Author: L. Mervart * * Created: 29-Jul-2014 * * Changes: * * -----------------------------------------------------------------------*/ #include #include "pppModel.h" using namespace BNC_PPP; using namespace std; const double t_astro::RHO_DEG = 180.0 / M_PI; const double t_astro::RHO_SEC = 3600.0 * 180.0 / M_PI; const double t_astro::MJD_J2000 = 51544.5; Matrix t_astro::rotX(double Angle) { const double C = cos(Angle); const double S = sin(Angle); Matrix UU(3,3); UU[0][0] = 1.0; UU[0][1] = 0.0; UU[0][2] = 0.0; UU[1][0] = 0.0; UU[1][1] = +C; UU[1][2] = +S; UU[2][0] = 0.0; UU[2][1] = -S; UU[2][2] = +C; return UU; } Matrix t_astro::rotY(double Angle) { const double C = cos(Angle); const double S = sin(Angle); Matrix UU(3,3); UU[0][0] = +C; UU[0][1] = 0.0; UU[0][2] = -S; UU[1][0] = 0.0; UU[1][1] = 1.0; UU[1][2] = 0.0; UU[2][0] = +S; UU[2][1] = 0.0; UU[2][2] = +C; return UU; } Matrix t_astro::rotZ(double Angle) { const double C = cos(Angle); const double S = sin(Angle); Matrix UU(3,3); UU[0][0] = +C; UU[0][1] = +S; UU[0][2] = 0.0; UU[1][0] = -S; UU[1][1] = +C; UU[1][2] = 0.0; UU[2][0] = 0.0; UU[2][1] = 0.0; UU[2][2] = 1.0; return UU; } // Greenwich Mean Sidereal Time /////////////////////////////////////////////////////////////////////////// double t_astro::GMST(double Mjd_UT1) { const double Secs = 86400.0; double Mjd_0 = floor(Mjd_UT1); double UT1 = Secs*(Mjd_UT1-Mjd_0); double T_0 = (Mjd_0 -MJD_J2000)/36525.0; double T = (Mjd_UT1-MJD_J2000)/36525.0; double gmst = 24110.54841 + 8640184.812866*T_0 + 1.002737909350795*UT1 + (0.093104-6.2e-6*T)*T*T; return 2.0*M_PI*Frac(gmst/Secs); } // Nutation Matrix /////////////////////////////////////////////////////////////////////////// Matrix t_astro::NutMatrix(double Mjd_TT) { const double T = (Mjd_TT-MJD_J2000)/36525.0; double ls = 2.0*M_PI*Frac(0.993133+ 99.997306*T); double D = 2.0*M_PI*Frac(0.827362+1236.853087*T); double F = 2.0*M_PI*Frac(0.259089+1342.227826*T); double N = 2.0*M_PI*Frac(0.347346- 5.372447*T); double dpsi = ( -17.200*sin(N) - 1.319*sin(2*(F-D+N)) - 0.227*sin(2*(F+N)) + 0.206*sin(2*N) + 0.143*sin(ls) ) / RHO_SEC; double deps = ( + 9.203*cos(N) + 0.574*cos(2*(F-D+N)) + 0.098*cos(2*(F+N)) - 0.090*cos(2*N) ) / RHO_SEC; double eps = 0.4090928-2.2696E-4*T; return rotX(-eps-deps)*rotZ(-dpsi)*rotX(+eps); } // Precession Matrix /////////////////////////////////////////////////////////////////////////// Matrix t_astro::PrecMatrix(double Mjd_1, double Mjd_2) { const double T = (Mjd_1-MJD_J2000)/36525.0; const double dT = (Mjd_2-Mjd_1)/36525.0; double zeta = ( (2306.2181+(1.39656-0.000139*T)*T)+ ((0.30188-0.000344*T)+0.017998*dT)*dT )*dT/RHO_SEC; double z = zeta + ( (0.79280+0.000411*T)+0.000205*dT)*dT*dT/RHO_SEC; double theta = ( (2004.3109-(0.85330+0.000217*T)*T)- ((0.42665+0.000217*T)+0.041833*dT)*dT )*dT/RHO_SEC; return rotZ(-z) * rotY(theta) * rotZ(-zeta); } // Sun's position /////////////////////////////////////////////////////////////////////////// ColumnVector t_astro::Sun(double Mjd_TT) { const double eps = 23.43929111/RHO_DEG; const double T = (Mjd_TT-MJD_J2000)/36525.0; double M = 2.0*M_PI * Frac ( 0.9931267 + 99.9973583*T); double L = 2.0*M_PI * Frac ( 0.7859444 + M/2.0/M_PI + (6892.0*sin(M)+72.0*sin(2.0*M)) / 1296.0e3); double r = 149.619e9 - 2.499e9*cos(M) - 0.021e9*cos(2*M); ColumnVector r_Sun(3); r_Sun << r*cos(L) << r*sin(L) << 0.0; r_Sun = rotX(-eps) * r_Sun; return rotZ(GMST(Mjd_TT)) * NutMatrix(Mjd_TT) * PrecMatrix(MJD_J2000, Mjd_TT) * r_Sun; } // Moon's position /////////////////////////////////////////////////////////////////////////// ColumnVector t_astro::Moon(double Mjd_TT) { const double eps = 23.43929111/RHO_DEG; const double T = (Mjd_TT-MJD_J2000)/36525.0; double L_0 = Frac ( 0.606433 + 1336.851344*T ); double l = 2.0*M_PI*Frac ( 0.374897 + 1325.552410*T ); double lp = 2.0*M_PI*Frac ( 0.993133 + 99.997361*T ); double D = 2.0*M_PI*Frac ( 0.827361 + 1236.853086*T ); double F = 2.0*M_PI*Frac ( 0.259086 + 1342.227825*T ); double dL = +22640*sin(l) - 4586*sin(l-2*D) + 2370*sin(2*D) + 769*sin(2*l) -668*sin(lp) - 412*sin(2*F) - 212*sin(2*l-2*D)- 206*sin(l+lp-2*D) +192*sin(l+2*D) - 165*sin(lp-2*D) - 125*sin(D) - 110*sin(l+lp) +148*sin(l-lp) - 55*sin(2*F-2*D); double L = 2.0*M_PI * Frac( L_0 + dL/1296.0e3 ); double S = F + (dL+412*sin(2*F)+541*sin(lp)) / RHO_SEC; double h = F-2*D; double N = -526*sin(h) + 44*sin(l+h) - 31*sin(-l+h) - 23*sin(lp+h) +11*sin(-lp+h) - 25*sin(-2*l+F) + 21*sin(-l+F); double B = ( 18520.0*sin(S) + N ) / RHO_SEC; double cosB = cos(B); double R = 385000e3 - 20905e3*cos(l) - 3699e3*cos(2*D-l) - 2956e3*cos(2*D) -570e3*cos(2*l) + 246e3*cos(2*l-2*D) - 205e3*cos(lp-2*D) -171e3*cos(l+2*D) - 152e3*cos(l+lp-2*D); ColumnVector r_Moon(3); r_Moon << R*cos(L)*cosB << R*sin(L)*cosB << R*sin(B); r_Moon = rotX(-eps) * r_Moon; return rotZ(GMST(Mjd_TT)) * NutMatrix(Mjd_TT) * PrecMatrix(MJD_J2000, Mjd_TT) * r_Moon; } // Tidal Correction //////////////////////////////////////////////////////////////////////////// ColumnVector t_tides::displacement(const bncTime& time, const ColumnVector& xyz) { if (time.undef()) { ColumnVector dX(3); dX = 0.0; return dX; } double Mjd = time.mjd() + time.daysec() / 86400.0; if (Mjd != _lastMjd) { _lastMjd = Mjd; _xSun = t_astro::Sun(Mjd); _rSun = sqrt(DotProduct(_xSun,_xSun)); _xSun /= _rSun; _xMoon = t_astro::Moon(Mjd); _rMoon = sqrt(DotProduct(_xMoon,_xMoon)); _xMoon /= _rMoon; } double rRec = sqrt(DotProduct(xyz, xyz)); ColumnVector xyzUnit = xyz / rRec; // Love's Numbers // -------------- const double H2 = 0.6078; const double L2 = 0.0847; // Tidal Displacement // ------------------ double scSun = DotProduct(xyzUnit, _xSun); double scMoon = DotProduct(xyzUnit, _xMoon); double p2Sun = 3.0 * (H2/2.0-L2) * scSun * scSun - H2/2.0; double p2Moon = 3.0 * (H2/2.0-L2) * scMoon * scMoon - H2/2.0; double x2Sun = 3.0 * L2 * scSun; double x2Moon = 3.0 * L2 * scMoon; const double gmWGS = 398.6005e12; const double gms = 1.3271250e20; const double gmm = 4.9027890e12; double facSun = gms / gmWGS * (rRec * rRec * rRec * rRec) / (_rSun * _rSun * _rSun); double facMoon = gmm / gmWGS * (rRec * rRec * rRec * rRec) / (_rMoon * _rMoon * _rMoon); ColumnVector dX = facSun * (x2Sun * _xSun + p2Sun * xyzUnit) + facMoon * (x2Moon * _xMoon + p2Moon * xyzUnit); return dX; } // Constructor /////////////////////////////////////////////////////////////////////////// t_loading::t_loading(const QString& fileName) { newBlqData = 0; readFile(fileName); printAll(); } t_loading::~t_loading() { if (newBlqData) { delete newBlqData; } QMapIterator it(blqMap); while (it.hasNext()) { it.next(); delete it.value(); } } t_irc t_loading::readFile(const QString& fileName) { QFile inFile(fileName); inFile.open(QIODevice::ReadOnly | QIODevice::Text); QTextStream in(&inFile); int row = 0; QString site = QString(); while ( !in.atEnd() ) { QString line = in.readLine(); // skip empty lines and comments if (line.indexOf("$$") != -1 || line.size() == 0) { continue; } line = line.trimmed(); QTextStream inLine(line.toLatin1(), QIODevice::ReadOnly); switch (row) { case 0: site = line; site = site.toUpper(); if (!newBlqData) { newBlqData = new t_blqData; newBlqData->amplitudes.ReSize(3,11); newBlqData->phases.ReSize(3,11); } break; case 1: case 2: case 3: for (int ii = 0; ii < 11; ii++) { inLine >> newBlqData->amplitudes[row-1][ii]; } break; case 4: case 5: case 6: for (int ii = 0; ii < 11; ii++) { inLine >> newBlqData->phases[row-4][ii]; } break; case 7: if (newBlqData && !site.isEmpty()) { blqMap[site] = newBlqData; site = QString(); row = -1; newBlqData = 0; } break; } row++; } inFile.close(); return success; } // Print //////////////////////////////////////////////////////////////////////////// void t_loading::printAll() const { QMapIterator it(blqMap); while (it.hasNext()) { it.next(); t_blqData* blq = it.value(); QString site = it.key(); cout << site.toStdString().c_str() << "\n"; for (int rr = 0; rr < 3; rr++) { for (int cc = 0; cc < 11; cc++) { cout << blq->amplitudes[rr][cc] << " "; } cout << endl; } for (int rr = 0; rr < 3; rr++) { for (int cc = 0; cc < 11; cc++) { cout << blq->phases[rr][cc] << " "; } cout << endl; } } } // Constructor /////////////////////////////////////////////////////////////////////////// t_windUp::t_windUp() { for (unsigned ii = 0; ii <= t_prn::MAXPRN; ii++) { sumWind[ii] = 0.0; lastEtime[ii] = 0.0; } } // Phase Wind-Up Correction /////////////////////////////////////////////////////////////////////////// double t_windUp::value(const bncTime& etime, const ColumnVector& rRec, t_prn prn, const ColumnVector& rSat) { if (etime.mjddec() != lastEtime[prn.toInt()]) { // Unit Vector GPS Satellite --> Receiver // -------------------------------------- ColumnVector rho = rRec - rSat; rho /= rho.norm_Frobenius(); // GPS Satellite unit Vectors sz, sy, sx // ------------------------------------- ColumnVector sz = -rSat / rSat.norm_Frobenius(); ColumnVector xSun = t_astro::Sun(etime.mjddec()); xSun /= xSun.norm_Frobenius(); ColumnVector sy = crossproduct(sz, xSun); ColumnVector sx = crossproduct(sy, sz); // Effective Dipole of the GPS Satellite Antenna // --------------------------------------------- ColumnVector dipSat = sx - rho * DotProduct(rho,sx) - crossproduct(rho, sy); // Receiver unit Vectors rx, ry // ---------------------------- ColumnVector rx(3); ColumnVector ry(3); double recEll[3]; xyz2ell(rRec.data(), recEll) ; double neu[3]; neu[0] = 1.0; neu[1] = 0.0; neu[2] = 0.0; neu2xyz(recEll, neu, rx.data()); neu[0] = 0.0; neu[1] = -1.0; neu[2] = 0.0; neu2xyz(recEll, neu, ry.data()); // Effective Dipole of the Receiver Antenna // ---------------------------------------- ColumnVector dipRec = rx - rho * DotProduct(rho,rx) + crossproduct(rho, ry); // Resulting Effect // ---------------- double alpha = DotProduct(dipSat,dipRec) / (dipSat.norm_Frobenius() * dipRec.norm_Frobenius()); if (alpha > 1.0) alpha = 1.0; if (alpha < -1.0) alpha = -1.0; double dphi = acos(alpha) / 2.0 / M_PI; // in cycles if ( DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0 ) { dphi = -dphi; } if (lastEtime[prn.toInt()] == 0.0) { sumWind[prn.toInt()] = dphi; } else { sumWind[prn.toInt()] = nint(sumWind[prn.toInt()] - dphi) + dphi; } lastEtime[prn.toInt()] = etime.mjddec(); } return sumWind[prn.toInt()]; } // Tropospheric Model (Saastamoinen) //////////////////////////////////////////////////////////////////////////// double t_tropo::delay_saast(const ColumnVector& xyz, double Ele) { Tracer tracer("bncModel::delay_saast"); if (xyz[0] == 0.0 && xyz[1] == 0.0 && xyz[2] == 0.0) { return 0.0; } double ell[3]; xyz2ell(xyz.data(), ell); double height = ell[2]; double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225); double TT = 18.0 - height * 0.0065 + 273.15; double hh = 50.0 * exp(-6.396e-4 * height); double ee = hh / 100.0 * exp(-37.2465 + 0.213166*TT - 0.000256908*TT*TT); double h_km = height / 1000.0; if (h_km < 0.0) h_km = 0.0; if (h_km > 5.0) h_km = 5.0; int ii = int(h_km + 1); if (ii > 5) ii = 5; double href = ii - 1; double bCor[6]; bCor[0] = 1.156; bCor[1] = 1.006; bCor[2] = 0.874; bCor[3] = 0.757; bCor[4] = 0.654; bCor[5] = 0.563; double BB = bCor[ii-1] + (bCor[ii]-bCor[ii-1]) * (h_km - href); double zen = M_PI/2.0 - Ele; return (0.002277/cos(zen)) * (pp + ((1255.0/TT)+0.05)*ee - BB*(tan(zen)*tan(zen))); } // Constructor /////////////////////////////////////////////////////////////////////////// t_iono::t_iono() { _psiPP = _phiPP = _lambdaPP = _lonS = 0.0; } t_iono::~t_iono() {} double t_iono::stec(const t_vTec* vTec, double signalPropagationTime, const ColumnVector& rSat, const bncTime& epochTime, const ColumnVector& xyzSta) { // Latitude, longitude, height are defined with respect to a spherical earth model // ------------------------------------------------------------------------------- ColumnVector geocSta(3); if (xyz2geoc(xyzSta.data(), geocSta.data()) != success) { return 0.0; } // satellite position rotated to the epoch of signal reception // ----------------------------------------------------------- ColumnVector xyzSat(3); double omegaZ = t_CST::omega * signalPropagationTime; xyzSat[0] = rSat[0] * cos(omegaZ) + rSat[1] * sin(omegaZ); xyzSat[1] = rSat[1] * cos(omegaZ) - rSat[0] * sin(omegaZ); xyzSat[2] = rSat[2]; // elevation and azimuth with respect to a spherical earth model // ------------------------------------------------------------- ColumnVector rhoV = xyzSat - xyzSta; double rho = rhoV.norm_Frobenius(); ColumnVector neu(3); xyz2neu(geocSta.data(), rhoV.data(), neu.data()); double sphEle = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho ); if (neu[2] < 0) { sphEle *= -1.0; } double sphAzi = atan2(neu[1], neu[0]); double epoch = fmod(epochTime.gpssec(), 86400.0); double stec = 0.0; for (unsigned ii = 0; ii < vTec->_layers.size(); ii++) { piercePoint(vTec->_layers[ii]._height, epoch, geocSta.data(), sphEle, sphAzi); double vtec = vtecSingleLayerContribution(vTec->_layers[ii]); stec += vtec * sin(sphEle + _psiPP); } return stec; } double t_iono::vtecSingleLayerContribution(const t_vTecLayer& vTecLayer) { double vtec = 0.0; int N = vTecLayer._C.Nrows()-1; int M = vTecLayer._C.Ncols()-1; double fac; for (int n = 0; n <= N; n++) { for (int m = 0; m <= min(n, M); m++) { double pnm = associatedLegendreFunction(n, m, sin(_phiPP)); double a = double(factorial(n - m)); double b = double(factorial(n + m)); if (m == 0) { fac = sqrt(2.0 * n + 1); } else { fac = sqrt(2.0 * (2.0 * n + 1) * a / b); } pnm *= fac; double Cnm_mlambda = vTecLayer._C[n][m] * cos(m * _lonS); double Snm_mlambda = vTecLayer._S[n][m] * sin(m * _lonS); vtec += (Snm_mlambda + Cnm_mlambda) * pnm; } } if (vtec < 0.0) { return 0.0; } return vtec; } void t_iono::piercePoint(double layerHeight, double epoch, const double* geocSta, double sphEle, double sphAzi) { double q = (t_CST::rgeoc + geocSta[2]) / (t_CST::rgeoc + layerHeight); _psiPP = M_PI/2 - sphEle - asin(q * cos(sphEle)); _phiPP = asin(sin(geocSta[0]) * cos(_psiPP) + cos(geocSta[0]) * sin(_psiPP) * cos(sphAzi)); if (( (geocSta[0]*180.0/M_PI > 0) && ( tan(_psiPP) * cos(sphAzi) > tan(M_PI/2 - geocSta[0])) ) || ( (geocSta[0]*180.0/M_PI < 0) && (-(tan(_psiPP) * cos(sphAzi)) > tan(M_PI/2 + geocSta[0])) )) { _lambdaPP = geocSta[1] + M_PI - asin((sin(_psiPP) * sin(sphAzi) / cos(_phiPP))); } else { _lambdaPP = geocSta[1] + asin((sin(_psiPP) * sin(sphAzi) / cos(_phiPP))); } _lonS = fmod((_lambdaPP + (epoch - 50400) * M_PI / 43200), 2*M_PI); return; }