1 | //------------------------------------------------------------------------------
|
---|
2 | //
|
---|
3 | // RTCM2.cpp
|
---|
4 | //
|
---|
5 | // Purpose:
|
---|
6 | //
|
---|
7 | // Module for extraction of RTCM2 messages
|
---|
8 | //
|
---|
9 | // References:
|
---|
10 | //
|
---|
11 | // RTCM 10402.3 Recommended Standards for Differential GNSS (Global
|
---|
12 | // Navigation Satellite Systems) Service; RTCM Paper 136-2001/SC104-STD,
|
---|
13 | // Version 2.3, 20 Aug. 2001; Radio Technical Commission For Maritime
|
---|
14 | // Services, Alexandria, Virgina (2001).
|
---|
15 | // ICD-GPS-200; Navstar GPS Space Segment / Navigation User Interfaces;
|
---|
16 | // Revison C; 25 Sept. 1997; Arinc Research Corp., El Segundo (1997).
|
---|
17 | // Jensen M.; RTCM2ASC Documentation;
|
---|
18 | // URL http://kom.aau.dk/~borre/masters/receiver/rtcm2asc.htm;
|
---|
19 | // last accessed 17 Sep. 2006
|
---|
20 | // Sager J.; Decoder for RTCM SC-104 data from a DGPS beacon receiver;
|
---|
21 | // URL http://www.wsrcc.com/wolfgang/ftp/rtcm-0.3.tar.gz;
|
---|
22 | // last accessed 17 Sep. 2006
|
---|
23 | //
|
---|
24 | // Notes:
|
---|
25 | //
|
---|
26 | // - The host computer is assumed to use little endian (Intel) byte order
|
---|
27 | //
|
---|
28 | // Last modified:
|
---|
29 | //
|
---|
30 | // 2006/09/17 OMO Created
|
---|
31 | // 2006/09/19 OMO Fixed getHeader() methods
|
---|
32 | // 2006/09/21 OMO Reduced phase ambiguity to 2^23 cycles
|
---|
33 | // 2006/10/05 OMO Specified const'ness of various member functions
|
---|
34 | // 2006/10/13 LMV Fixed resolvedPhase to handle missing C1 range
|
---|
35 | // 2006/10/14 LMV Fixed loop cunter in ThirtyBitWord
|
---|
36 | // 2006/10/14 LMV Exception handling
|
---|
37 | // 2006/10/17 OMO Removed obsolete check of multiple message indicator
|
---|
38 | // 2006/10/17 OMO Fixed parity handling
|
---|
39 | // 2006/10/18 OMO Improved screening of bad data in RTCM2_Obs::extract
|
---|
40 | // 2006/11/25 OMO Revised check for presence of GLONASS data
|
---|
41 | // 2007/05/25 GW Round time tag to 100 ms
|
---|
42 | // 2007/12/11 AHA Changed handling of C/A- and P-Code on L1
|
---|
43 | // 2007/12/13 AHA Changed epoch comparison in packet extraction
|
---|
44 | // 2008/03/01 OMO Compilation flag for epoch rounding
|
---|
45 | // 2008/03/04 AHA Fixed problems with PRN 32
|
---|
46 | // 2008/03/05 AHA Implemeted fix for Trimble 4000SSI receivers
|
---|
47 | // 2008/03/07 AHA Major revision of input buffer handling
|
---|
48 | // 2008/03/07 AHA Removed unnecessary failure flag
|
---|
49 | // 2008/03/10 AHA Corrected extraction of antenna serial number
|
---|
50 | // 2008/03/10 AHA Corrected buffer length check in getPacket()
|
---|
51 | // 2008/03/11 AHA isGPS-flag in RTCM2_Obs is now set to false on clear()
|
---|
52 | // 2008/03/14 AHA Added checks for data consistency in extraction routines
|
---|
53 | // 2008/09/01 AHA Harmonization with newest BNC version
|
---|
54 | //
|
---|
55 | // (c) DLR/GSOC
|
---|
56 | //
|
---|
57 | //------------------------------------------------------------------------------
|
---|
58 |
|
---|
59 | #include <bitset>
|
---|
60 | #include <cmath>
|
---|
61 | #include <fstream>
|
---|
62 | #include <iomanip>
|
---|
63 | #include <iostream>
|
---|
64 | #include <string>
|
---|
65 | #include <vector>
|
---|
66 |
|
---|
67 | #include "RTCM2.h"
|
---|
68 |
|
---|
69 | // Activate (1) or deactivate (0) debug output for tracing parity errors and
|
---|
70 | // undersized packets in get(Unsigned)Bits
|
---|
71 |
|
---|
72 | #define DEBUG 0
|
---|
73 |
|
---|
74 | // Activate (1) or deactivate (0) rounding of measurement epochs to 100ms
|
---|
75 | //
|
---|
76 | // Note: A need to round the measurement epoch to integer tenths of a second was
|
---|
77 | // noted by BKG in the processing of RTCM2 data from various receivers in NTRIP
|
---|
78 | // real-time networks. It is unclear at present, whether this is due to an
|
---|
79 | // improper implementation of the RTCM2 standard in the respective receivers
|
---|
80 | // or an unclear formulation of the standard.
|
---|
81 |
|
---|
82 | #define ROUND_EPOCH 1
|
---|
83 |
|
---|
84 | // Fix for data streams originating from TRIMBLE_4000SSI receivers.
|
---|
85 | // GPS PRN32 is erroneously flagged as GLONASS satellite in the C/A
|
---|
86 | // pseudorange messages. We therefore use a majority voting to
|
---|
87 | // determine the true constellation for this message.
|
---|
88 | // This fix is only required for Trimble4000SSI receivers but can also
|
---|
89 | // be used with all other known receivers.
|
---|
90 |
|
---|
91 | #define FIX_TRIMBLE_4000SSI 1
|
---|
92 |
|
---|
93 | using namespace std;
|
---|
94 |
|
---|
95 |
|
---|
96 | // GPS constants
|
---|
97 |
|
---|
98 | const double c_light = 299792458.0; // Speed of light [m/s]; IAU 1976
|
---|
99 | const double f_L1 = 1575.42e6; // L1 frequency [Hz] (10.23MHz*154)
|
---|
100 | const double f_L2 = 1227.60e6; // L2 frequency [Hz] (10.23MHz*120)
|
---|
101 |
|
---|
102 | const double lambda_L1 = c_light/f_L1; // L1 wavelength [m] (0.1903m)
|
---|
103 | const double lambda_L2 = c_light/f_L2; // L2 wavelength [m]
|
---|
104 |
|
---|
105 | //
|
---|
106 | // Bits for message availability checks
|
---|
107 | //
|
---|
108 |
|
---|
109 | const int bit_L1rngGPS = 0;
|
---|
110 | const int bit_L2rngGPS = 1;
|
---|
111 | const int bit_L1cphGPS = 2;
|
---|
112 | const int bit_L2cphGPS = 3;
|
---|
113 | const int bit_L1rngGLO = 4;
|
---|
114 | const int bit_L2rngGLO = 5;
|
---|
115 | const int bit_L1cphGLO = 6;
|
---|
116 | const int bit_L2cphGLO = 7;
|
---|
117 |
|
---|
118 |
|
---|
119 | //
|
---|
120 | // namespace rtcm2
|
---|
121 | //
|
---|
122 |
|
---|
123 | namespace rtcm2 {
|
---|
124 |
|
---|
125 | //------------------------------------------------------------------------------
|
---|
126 | //
|
---|
127 | // class ThirtyBitWord (implementation)
|
---|
128 | //
|
---|
129 | // Purpose:
|
---|
130 | //
|
---|
131 | // Handling of RTCM2 30bit words
|
---|
132 | //
|
---|
133 | //------------------------------------------------------------------------------
|
---|
134 |
|
---|
135 | // Constructor
|
---|
136 |
|
---|
137 | ThirtyBitWord::ThirtyBitWord() : W(0) {
|
---|
138 | };
|
---|
139 |
|
---|
140 | // Clear entire 30-bit word and 2-bit parity from previous word
|
---|
141 |
|
---|
142 | void ThirtyBitWord::clear() {
|
---|
143 | W = 0;
|
---|
144 | };
|
---|
145 |
|
---|
146 | // Parity check
|
---|
147 |
|
---|
148 | bool ThirtyBitWord::validParity() const {
|
---|
149 |
|
---|
150 | // Parity stuff
|
---|
151 |
|
---|
152 | static const unsigned int PARITY_25 = 0xBB1F3480;
|
---|
153 | static const unsigned int PARITY_26 = 0x5D8F9A40;
|
---|
154 | static const unsigned int PARITY_27 = 0xAEC7CD00;
|
---|
155 | static const unsigned int PARITY_28 = 0x5763E680;
|
---|
156 | static const unsigned int PARITY_29 = 0x6BB1F340;
|
---|
157 | static const unsigned int PARITY_30 = 0x8B7A89C0;
|
---|
158 |
|
---|
159 | // Look-up table for parity of eight bit bytes
|
---|
160 | // (parity=0 if the number of 0s and 1s is equal, else parity=1)
|
---|
161 | static unsigned char byteParity[] = {
|
---|
162 | 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
|
---|
163 | 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
|
---|
164 | 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
|
---|
165 | 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
|
---|
166 | 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
|
---|
167 | 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
|
---|
168 | 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
|
---|
169 | 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0
|
---|
170 | };
|
---|
171 |
|
---|
172 | // Local variables
|
---|
173 |
|
---|
174 | unsigned int t, w, p;
|
---|
175 |
|
---|
176 | // The sign of the data is determined by the D30* parity bit
|
---|
177 | // of the previous data word. If D30* is set, invert the data
|
---|
178 | // bits D01..D24 to obtain the d01..d24 (but leave all other
|
---|
179 | // bits untouched).
|
---|
180 |
|
---|
181 | w = W;
|
---|
182 | if ( w & 0x40000000 ) w ^= 0x3FFFFFC0;
|
---|
183 |
|
---|
184 | // Compute the parity of the sign corrected data bits d01..d24
|
---|
185 | // as described in the ICD-GPS-200
|
---|
186 |
|
---|
187 | t = w & PARITY_25;
|
---|
188 | p = ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
|
---|
189 | byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
|
---|
190 |
|
---|
191 | t = w & PARITY_26;
|
---|
192 | p = (p<<1) |
|
---|
193 | ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
|
---|
194 | byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
|
---|
195 |
|
---|
196 | t = w & PARITY_27;
|
---|
197 | p = (p<<1) |
|
---|
198 | ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
|
---|
199 | byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
|
---|
200 |
|
---|
201 | t = w & PARITY_28;
|
---|
202 | p = (p<<1) |
|
---|
203 | ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
|
---|
204 | byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
|
---|
205 |
|
---|
206 | t = w & PARITY_29;
|
---|
207 | p = (p<<1) |
|
---|
208 | ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
|
---|
209 | byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
|
---|
210 |
|
---|
211 | t = w & PARITY_30;
|
---|
212 | p = (p<<1) |
|
---|
213 | ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
|
---|
214 | byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
|
---|
215 |
|
---|
216 | return ( (W & 0x3f) == p);
|
---|
217 |
|
---|
218 | };
|
---|
219 |
|
---|
220 |
|
---|
221 | // Check preamble
|
---|
222 |
|
---|
223 | bool ThirtyBitWord::isHeader() const {
|
---|
224 |
|
---|
225 | const unsigned char Preamble = 0x66;
|
---|
226 |
|
---|
227 | unsigned char b = (value()>>22) & 0xFF;
|
---|
228 |
|
---|
229 | return ( b==Preamble );
|
---|
230 |
|
---|
231 | };
|
---|
232 |
|
---|
233 |
|
---|
234 | // Return entire 32-bit (current word and previous parity)
|
---|
235 |
|
---|
236 | unsigned int ThirtyBitWord::all() const {
|
---|
237 | return W;
|
---|
238 | };
|
---|
239 |
|
---|
240 |
|
---|
241 | // Return sign-corrected 30-bit (or zero if parity mismatch)
|
---|
242 |
|
---|
243 | unsigned int ThirtyBitWord::value() const {
|
---|
244 |
|
---|
245 | unsigned int w = W;
|
---|
246 |
|
---|
247 | if (validParity()) {
|
---|
248 | // Return data and current parity bits. Invert data bits if D30*
|
---|
249 | // is set and discard old parity bits.
|
---|
250 | if ( w & 0x40000000 ) w ^= 0x3FFFFFC0;
|
---|
251 | return (w & 0x3FFFFFFF);
|
---|
252 | }
|
---|
253 | else {
|
---|
254 | // Error; invalid parity
|
---|
255 | return 0;
|
---|
256 | };
|
---|
257 |
|
---|
258 | };
|
---|
259 |
|
---|
260 |
|
---|
261 | // Append a byte with six data bits
|
---|
262 |
|
---|
263 | void ThirtyBitWord::append(unsigned char b) {
|
---|
264 |
|
---|
265 | // Look up table for swap (left-right) of 6 data bits
|
---|
266 | static const unsigned char
|
---|
267 | swap[] = {
|
---|
268 | 0,32,16,48, 8,40,24,56, 4,36,20,52,12,44,28,60,
|
---|
269 | 2,34,18,50,10,42,26,58, 6,38,22,54,14,46,30,62,
|
---|
270 | 1,33,17,49, 9,41,25,57, 5,37,21,53,13,45,29,61,
|
---|
271 | 3,35,19,51,11,43,27,59, 7,39,23,55,15,47,31,63
|
---|
272 | };
|
---|
273 |
|
---|
274 | // Bits 7 and 6 (of 0..7) must be "01" for valid data bytes
|
---|
275 | if ( (b & 0x40) != 0x40 ) {
|
---|
276 | // We simply skip the invalid input byte and leave the word unchanged
|
---|
277 | #if (DEBUG>0)
|
---|
278 | cerr << "Error in append()" << bitset<32>(all()) << endl;
|
---|
279 | #endif
|
---|
280 | return;
|
---|
281 | };
|
---|
282 |
|
---|
283 | // Swap bits 0..5 to restore proper bit order for 30bit words
|
---|
284 | b = swap[ b & 0x3f];
|
---|
285 |
|
---|
286 | // Fill word
|
---|
287 | W = ( (W <<6) | (b & 0x3f) ) ;
|
---|
288 |
|
---|
289 | };
|
---|
290 |
|
---|
291 |
|
---|
292 | // Get next 30bit word from string
|
---|
293 |
|
---|
294 | void ThirtyBitWord::get(const std::string& buf) {
|
---|
295 |
|
---|
296 | // Check if string is long enough
|
---|
297 |
|
---|
298 | if (buf.size()<5) {
|
---|
299 | // Ignore; users should avoid this case prior to calling get()
|
---|
300 |
|
---|
301 | #if ( DEBUG > 0 )
|
---|
302 | cerr << "Error in get(): packet too short (" << buf.size() <<")" << endl;
|
---|
303 | #endif
|
---|
304 |
|
---|
305 | return;
|
---|
306 | };
|
---|
307 |
|
---|
308 | // Process 5 bytes
|
---|
309 |
|
---|
310 | for (int i=0; i<5; i++) append(buf[i]);
|
---|
311 |
|
---|
312 | #if (DEBUG>0)
|
---|
313 | if (!validParity()) {
|
---|
314 | cerr << "Parity error in get()"
|
---|
315 | << bitset<32>(all()) << endl;
|
---|
316 | };
|
---|
317 | #endif
|
---|
318 |
|
---|
319 | };
|
---|
320 |
|
---|
321 | // Get next 30bit word from file
|
---|
322 |
|
---|
323 | void ThirtyBitWord::get(std::istream& inp) {
|
---|
324 |
|
---|
325 | unsigned char b;
|
---|
326 |
|
---|
327 | for (int i=0; i<5; i++) {
|
---|
328 | inp >> b;
|
---|
329 | if (inp.fail()) { clear(); return; };
|
---|
330 | append(b);
|
---|
331 | };
|
---|
332 |
|
---|
333 | #if (DEBUG>0)
|
---|
334 | if (!validParity()) {
|
---|
335 | cerr << "Parity error in get()"
|
---|
336 | << bitset<32>(all()) << endl;
|
---|
337 | };
|
---|
338 | #endif
|
---|
339 |
|
---|
340 | };
|
---|
341 |
|
---|
342 | // Get next header word from string
|
---|
343 |
|
---|
344 | void ThirtyBitWord::getHeader(std::string& buf) {
|
---|
345 |
|
---|
346 | const unsigned int wordLen = 5; // Number of bytes representing a 30-bit word
|
---|
347 | const unsigned int spare = 1; // Number of spare words for resync of parity
|
---|
348 | // (same value as inRTCM2packet::getPacket())
|
---|
349 | unsigned int i;
|
---|
350 |
|
---|
351 | i=0;
|
---|
352 | // append spare word (to get correct parity) and first consecutive word
|
---|
353 | while (i<(spare+1)*wordLen) {
|
---|
354 | // Process byte
|
---|
355 | append(buf[i]);
|
---|
356 | // Increment count
|
---|
357 | i++;
|
---|
358 | };
|
---|
359 |
|
---|
360 | // start searching for preamble in first word after spare word
|
---|
361 | while (!isHeader() && i<buf.size() ) {
|
---|
362 | // Process byte
|
---|
363 | append(buf[i]);
|
---|
364 | // Increment count
|
---|
365 | i++;
|
---|
366 | };
|
---|
367 |
|
---|
368 | // Remove processed bytes from buffer. Retain also the previous word to
|
---|
369 | // allow a resync if getHeader() is called repeatedly on the same buffer.
|
---|
370 | if (i>=(1+spare)*wordLen) buf.erase(0,i-(1+spare)*wordLen);
|
---|
371 |
|
---|
372 | #if (DEBUG>0)
|
---|
373 | if (!validParity()) {
|
---|
374 | cerr << "Parity error in getHeader()"
|
---|
375 | << bitset<32>(all()) << endl;
|
---|
376 | };
|
---|
377 | #endif
|
---|
378 |
|
---|
379 | };
|
---|
380 |
|
---|
381 | // Get next header word from file
|
---|
382 |
|
---|
383 | void ThirtyBitWord::getHeader(std::istream& inp) {
|
---|
384 |
|
---|
385 | unsigned char b;
|
---|
386 | unsigned int i;
|
---|
387 |
|
---|
388 | i=0;
|
---|
389 | while ( !isHeader() || i<5 ) {
|
---|
390 | inp >> b;
|
---|
391 | if (inp.fail()) { clear(); return; };
|
---|
392 | append(b); i++;
|
---|
393 | };
|
---|
394 |
|
---|
395 | #if (DEBUG>0)
|
---|
396 | if (!validParity()) {
|
---|
397 | cerr << "Parity error in getHeader()"
|
---|
398 | << bitset<32>(all()) << endl;
|
---|
399 | };
|
---|
400 | #endif
|
---|
401 |
|
---|
402 | };
|
---|
403 |
|
---|
404 |
|
---|
405 | //------------------------------------------------------------------------------
|
---|
406 | //
|
---|
407 | // RTCM2packet (class implementation)
|
---|
408 | //
|
---|
409 | // Purpose:
|
---|
410 | //
|
---|
411 | // A class for handling RTCM2 data packets
|
---|
412 | //
|
---|
413 | //------------------------------------------------------------------------------
|
---|
414 |
|
---|
415 | // Constructor
|
---|
416 |
|
---|
417 | RTCM2packet::RTCM2packet() {
|
---|
418 | clear();
|
---|
419 | };
|
---|
420 |
|
---|
421 | // Initialization
|
---|
422 |
|
---|
423 | void RTCM2packet::clear() {
|
---|
424 |
|
---|
425 | W.clear();
|
---|
426 |
|
---|
427 | H1=0;
|
---|
428 | H2=0;
|
---|
429 |
|
---|
430 | DW.resize(0,0);
|
---|
431 |
|
---|
432 | };
|
---|
433 |
|
---|
434 | // Complete packet, valid parity
|
---|
435 |
|
---|
436 | bool RTCM2packet::valid() const {
|
---|
437 |
|
---|
438 | // The methods for creating a packet (get,">>") ensure
|
---|
439 | // that a packet has a consistent number of data words
|
---|
440 | // and a valid parity in all header and data words.
|
---|
441 | // Therefore a packet is either empty or valid.
|
---|
442 |
|
---|
443 | return (H1!=0);
|
---|
444 |
|
---|
445 | };
|
---|
446 |
|
---|
447 |
|
---|
448 | //
|
---|
449 | // Gets the next packet from the buffer
|
---|
450 | //
|
---|
451 |
|
---|
452 | void RTCM2packet::getPacket(std::string& buf) {
|
---|
453 |
|
---|
454 | const int wordLen = 5; // Number of bytes representing a 30-bit word
|
---|
455 | const int spare = 1; // Number of spare words for resync of parity
|
---|
456 | // (same value as used in ThirtyBitWord::getHeader)
|
---|
457 | unsigned int n;
|
---|
458 |
|
---|
459 | // Does the package content at least spare bytes and first header byte?
|
---|
460 | if (buf.size()<(spare+1)*wordLen) {
|
---|
461 | clear();
|
---|
462 | return;
|
---|
463 | };
|
---|
464 |
|
---|
465 | // Try to read a full packet. Processed bytes are removed from the input
|
---|
466 | // buffer except for the latest spare*wordLen bytes to restore the parity
|
---|
467 | // bytes upon subseqeunt calls of getPacket().
|
---|
468 |
|
---|
469 | // Locate and read the first header word
|
---|
470 | W.getHeader(buf);
|
---|
471 | if (!W.isHeader()) {
|
---|
472 | // No header found; try again next time. buf retains only the spare
|
---|
473 | // words. The packet contents is cleared to indicate an unsuccessful
|
---|
474 | // termination of getPacket().
|
---|
475 | clear();
|
---|
476 |
|
---|
477 | #if ( DEBUG > 0 )
|
---|
478 | cerr << "Error in getPacket(): W.isHeader() = false for H1" << endl;
|
---|
479 | #endif
|
---|
480 |
|
---|
481 | return;
|
---|
482 | };
|
---|
483 | H1 = W.value();
|
---|
484 |
|
---|
485 | // Do we have enough bytes to read the next word? If not, the packet
|
---|
486 | // contents is cleared to indicate an unsuccessful termination. The
|
---|
487 | // previously read spare and header bytes are retained in the buffer
|
---|
488 | // for use in the next call of getPacket().
|
---|
489 | if (buf.size()<(spare+2)*wordLen) {
|
---|
490 | clear();
|
---|
491 |
|
---|
492 | #if ( DEBUG > 0 )
|
---|
493 | cerr << "Error in getPacket(): buffer too short for complete H2" << endl;
|
---|
494 | #endif
|
---|
495 |
|
---|
496 | return;
|
---|
497 | };
|
---|
498 |
|
---|
499 | // Read the second header word
|
---|
500 | W.get(buf.substr((spare+1)*wordLen,buf.size()-(spare+1)*wordLen));
|
---|
501 | H2 = W.value();
|
---|
502 | if (!W.validParity()) {
|
---|
503 | // Invalid H2 word; delete first buffer byte and try to resynch next time.
|
---|
504 | // The packet contents is cleared to indicate an unsuccessful termination.
|
---|
505 | clear();
|
---|
506 | buf.erase(0,1);
|
---|
507 |
|
---|
508 | #if ( DEBUG > 0 )
|
---|
509 | cerr << "Error in getPacket(): W.validParity() = false for H2" << endl;
|
---|
510 | #endif
|
---|
511 |
|
---|
512 | return;
|
---|
513 | };
|
---|
514 |
|
---|
515 | n = nDataWords();
|
---|
516 |
|
---|
517 | // Do we have enough bytes to read the next word? If not, the packet
|
---|
518 | // contents is cleared to indicate an unsuccessful termination. The
|
---|
519 | // previously read spare and header bytes are retained in the buffer
|
---|
520 | // for use in the next call of getPacket().
|
---|
521 | if (buf.size()<(spare+2+n)*wordLen) {
|
---|
522 | clear();
|
---|
523 |
|
---|
524 | #if ( DEBUG > 0 )
|
---|
525 | cerr << "Error in getPacket(): buffer too short for complete " << n
|
---|
526 | << " DWs" << endl;
|
---|
527 | #endif
|
---|
528 |
|
---|
529 | return;
|
---|
530 | };
|
---|
531 |
|
---|
532 | DW.resize(n);
|
---|
533 | for (unsigned int i=0; i<n; i++) {
|
---|
534 | W.get(buf.substr((spare+2+i)*wordLen,buf.size()-(spare+2+i)*wordLen));
|
---|
535 | DW[i] = W.value();
|
---|
536 | if (!W.validParity()) {
|
---|
537 | // Invalid data word; delete first byte and try to resynch next time.
|
---|
538 | // The packet contents is cleared to indicate an unsuccessful termination.
|
---|
539 | clear();
|
---|
540 | buf.erase(0,1);
|
---|
541 |
|
---|
542 | #if ( DEBUG > 0 )
|
---|
543 | cerr << "Error in getPacket(): W.validParity() = false for DW"
|
---|
544 | << i << endl;
|
---|
545 | #endif
|
---|
546 |
|
---|
547 | return;
|
---|
548 | };
|
---|
549 | };
|
---|
550 |
|
---|
551 | // Successful packet extraction; delete total number of message bytes
|
---|
552 | // from buffer.
|
---|
553 | // Note: a total of "spare" words remain in the buffer to enable a
|
---|
554 | // parity resynchronization when searching the next header.
|
---|
555 |
|
---|
556 | buf.erase(0,(n+2)*wordLen);
|
---|
557 |
|
---|
558 | return;
|
---|
559 |
|
---|
560 | };
|
---|
561 |
|
---|
562 |
|
---|
563 | //
|
---|
564 | // Gets the next packet from the input stream
|
---|
565 | //
|
---|
566 |
|
---|
567 | void RTCM2packet::getPacket(std::istream& inp) {
|
---|
568 |
|
---|
569 | int n;
|
---|
570 |
|
---|
571 | W.getHeader(inp);
|
---|
572 | H1 = W.value();
|
---|
573 | if (inp.fail() || !W.isHeader()) { clear(); return; }
|
---|
574 |
|
---|
575 | W.get(inp);
|
---|
576 | H2 = W.value();
|
---|
577 | if (inp.fail() || !W.validParity()) { clear(); return; }
|
---|
578 |
|
---|
579 | n = nDataWords();
|
---|
580 | DW.resize(n);
|
---|
581 | for (int i=0; i<n; i++) {
|
---|
582 | W.get(inp);
|
---|
583 | DW[i] = W.value();
|
---|
584 | if (inp.fail() || !W.validParity()) { clear(); return; }
|
---|
585 | };
|
---|
586 |
|
---|
587 | return;
|
---|
588 |
|
---|
589 | };
|
---|
590 |
|
---|
591 | //
|
---|
592 | // Input operator
|
---|
593 | //
|
---|
594 | // Reads an RTCM2 packet from the input stream.
|
---|
595 | //
|
---|
596 |
|
---|
597 | istream& operator >> (istream& is, RTCM2packet& p) {
|
---|
598 |
|
---|
599 | p.getPacket(is);
|
---|
600 |
|
---|
601 | return is;
|
---|
602 |
|
---|
603 | };
|
---|
604 |
|
---|
605 | // Access methods
|
---|
606 |
|
---|
607 | unsigned int RTCM2packet::header1() const {
|
---|
608 | return H1;
|
---|
609 | };
|
---|
610 |
|
---|
611 | unsigned int RTCM2packet::header2() const {
|
---|
612 | return H2;
|
---|
613 | };
|
---|
614 |
|
---|
615 | unsigned int RTCM2packet::dataWord(int i) const {
|
---|
616 | if ( (unsigned int)i < DW.size() ) {
|
---|
617 | return DW[i];
|
---|
618 | }
|
---|
619 | else {
|
---|
620 | return 0;
|
---|
621 | }
|
---|
622 | };
|
---|
623 |
|
---|
624 | unsigned int RTCM2packet::msgType() const {
|
---|
625 | return ( H1>>16 & 0x003F );
|
---|
626 | };
|
---|
627 |
|
---|
628 | unsigned int RTCM2packet::stationID() const {
|
---|
629 | return ( H1>> 6 & 0x03FF );
|
---|
630 | };
|
---|
631 |
|
---|
632 | unsigned int RTCM2packet::modZCount() const {
|
---|
633 | return ( H2>>17 & 0x01FFF );
|
---|
634 | };
|
---|
635 |
|
---|
636 | unsigned int RTCM2packet::seqNumber() const {
|
---|
637 | return ( H2>>14 & 0x0007 );
|
---|
638 | };
|
---|
639 |
|
---|
640 | unsigned int RTCM2packet::nDataWords() const {
|
---|
641 | return ( H2>> 9 & 0x001F );
|
---|
642 | };
|
---|
643 |
|
---|
644 | unsigned int RTCM2packet::staHealth() const {
|
---|
645 | return ( H2>> 6 & 0x0003 );
|
---|
646 | };
|
---|
647 |
|
---|
648 |
|
---|
649 | //
|
---|
650 | // Get unsigned bit field
|
---|
651 | //
|
---|
652 | // Bits are numbered from left (msb) to right (lsb) starting at bit 0
|
---|
653 | //
|
---|
654 |
|
---|
655 | unsigned int RTCM2packet::getUnsignedBits ( unsigned int start,
|
---|
656 | unsigned int n ) const {
|
---|
657 |
|
---|
658 | unsigned int iFirst = start/24; // Index of first data word
|
---|
659 | unsigned int iLast = (start+n-1)/24; // Index of last data word
|
---|
660 | unsigned int bitField = 0;
|
---|
661 | unsigned int tmp;
|
---|
662 |
|
---|
663 | // Checks
|
---|
664 |
|
---|
665 | if (n>32) {
|
---|
666 | throw("Error: can't handle >32 bits in RTCM2packet::getUnsignedBits");
|
---|
667 | };
|
---|
668 |
|
---|
669 | if ( 24*DW.size() < start+n-1 ) {
|
---|
670 | #if (DEBUG>0)
|
---|
671 | cerr << "Debug output RTCM2packet::getUnsignedBits" << endl
|
---|
672 | << " P.msgType: " << setw(5) << msgType() << endl
|
---|
673 | << " P.nDataWords: " << setw(5) << nDataWords() << endl
|
---|
674 | << " start: " << setw(5) << start << endl
|
---|
675 | << " n: " << setw(5) << n << endl
|
---|
676 | << " P.H1: " << setw(5) << bitset<32>(H1) << endl
|
---|
677 | << " P.H2: " << setw(5) << bitset<32>(H2) << endl
|
---|
678 | << endl
|
---|
679 | << flush;
|
---|
680 | #endif
|
---|
681 | throw("Error: Packet too short in RTCM2packet::getUnsignedBits");
|
---|
682 | }
|
---|
683 |
|
---|
684 | // Handle initial data word
|
---|
685 | // Get all data bits. Strip parity and unwanted leading bits.
|
---|
686 | // Store result in 24 lsb bits of tmp.
|
---|
687 |
|
---|
688 | tmp = (DW[iFirst]>>6) & 0xFFFFFF;
|
---|
689 | tmp = ( ( tmp << start%24) & 0xFFFFFF ) >> start%24 ;
|
---|
690 |
|
---|
691 | // Handle central data word
|
---|
692 |
|
---|
693 | if ( iFirst<iLast ) {
|
---|
694 | bitField = tmp;
|
---|
695 | for (unsigned int iWord=iFirst+1; iWord<iLast; iWord++) {
|
---|
696 | tmp = (DW[iWord]>>6) & 0xFFFFFF;
|
---|
697 | bitField = (bitField << 24) | tmp;
|
---|
698 | };
|
---|
699 | tmp = (DW[iLast]>>6) & 0xFFFFFF;
|
---|
700 | };
|
---|
701 |
|
---|
702 | // Handle last data word
|
---|
703 |
|
---|
704 | tmp = tmp >> (23-(start+n-1)%24);
|
---|
705 | bitField = (bitField << ((start+n-1)%24+1)) | tmp;
|
---|
706 |
|
---|
707 | // Done
|
---|
708 |
|
---|
709 | return bitField;
|
---|
710 |
|
---|
711 | };
|
---|
712 |
|
---|
713 | //
|
---|
714 | // Get signed bit field
|
---|
715 | //
|
---|
716 | // Bits are numbered from left (msb) to right (lsb) starting at bit 0
|
---|
717 | //
|
---|
718 |
|
---|
719 | int RTCM2packet::getBits ( unsigned int start,
|
---|
720 | unsigned int n ) const {
|
---|
721 |
|
---|
722 |
|
---|
723 | // Checks
|
---|
724 |
|
---|
725 | if (n>32) {
|
---|
726 | throw("Error: can't handle >32 bits in RTCM2packet::getBits");
|
---|
727 | };
|
---|
728 |
|
---|
729 | if ( 24*DW.size() < start+n-1 ) {
|
---|
730 | #if (DEBUG>0)
|
---|
731 | cerr << "Debug output RTCM2packet::getUnsignedBits" << endl
|
---|
732 | << " P.msgType: " << setw(5) << msgType() << endl
|
---|
733 | << " P.nDataWords: " << setw(5) << nDataWords() << endl
|
---|
734 | << " start: " << setw(5) << start << endl
|
---|
735 | << " n: " << setw(5) << n << endl
|
---|
736 | << " P.H1: " << setw(5) << bitset<32>(H1) << endl
|
---|
737 | << " P.H2: " << setw(5) << bitset<32>(H2) << endl
|
---|
738 | << endl
|
---|
739 | << flush;
|
---|
740 | #endif
|
---|
741 | throw("Error: Packet too short in RTCM2packet::getBits");
|
---|
742 | }
|
---|
743 |
|
---|
744 | return ((int)(getUnsignedBits(start,n)<<(32-n))>>(32-n));
|
---|
745 |
|
---|
746 | };
|
---|
747 |
|
---|
748 |
|
---|
749 | //------------------------------------------------------------------------------
|
---|
750 | //
|
---|
751 | // RTCM2_03 (class implementation)
|
---|
752 | //
|
---|
753 | // Purpose:
|
---|
754 | //
|
---|
755 | // A class for handling RTCM 2 GPS Reference Station Parameters messages
|
---|
756 | //
|
---|
757 | //------------------------------------------------------------------------------
|
---|
758 |
|
---|
759 | // Constructor
|
---|
760 | RTCM2_03::RTCM2_03(){
|
---|
761 | validMsg = false;
|
---|
762 | x = 0.0;
|
---|
763 | y = 0.0;
|
---|
764 | z=0.0;
|
---|
765 | };
|
---|
766 |
|
---|
767 | void RTCM2_03::extract(const RTCM2packet& P) {
|
---|
768 |
|
---|
769 | // Check validity, packet type and number of data words
|
---|
770 |
|
---|
771 | validMsg = (P.valid());
|
---|
772 | if (!validMsg) return;
|
---|
773 |
|
---|
774 | validMsg = (P.ID()==03);
|
---|
775 | if (!validMsg) return;
|
---|
776 |
|
---|
777 | validMsg = (P.nDataWords()==4);
|
---|
778 | if (!validMsg) return;
|
---|
779 |
|
---|
780 | // Antenna reference point coordinates
|
---|
781 |
|
---|
782 | x = P.getBits( 0,32)*0.01; // X [m]
|
---|
783 | y = P.getBits(32,32)*0.01; // Y [m]
|
---|
784 | z = P.getBits(64,32)*0.01; // Z [m]
|
---|
785 |
|
---|
786 | };
|
---|
787 |
|
---|
788 | //------------------------------------------------------------------------------
|
---|
789 | //
|
---|
790 | // RTCM2_23 (class implementation)
|
---|
791 | //
|
---|
792 | // Purpose:
|
---|
793 | //
|
---|
794 | // A class for handling RTCM 2 Antenna Type Definition messages
|
---|
795 | //
|
---|
796 | //------------------------------------------------------------------------------
|
---|
797 |
|
---|
798 | void RTCM2_23::extract(const RTCM2packet& P) {
|
---|
799 |
|
---|
800 | unsigned int nad, nas;
|
---|
801 |
|
---|
802 | const unsigned int nF1 = 8; // bits in first field (R,AF,SF,NAD)
|
---|
803 | const unsigned int nF2 =16; // bits in second field (SETUP ID,R,NAS)
|
---|
804 | const unsigned int nBits=24; // data bits in 30bit word
|
---|
805 |
|
---|
806 | // Check validity, packet type and number of data words
|
---|
807 |
|
---|
808 | validMsg = (P.valid());
|
---|
809 | if (!validMsg) return;
|
---|
810 |
|
---|
811 | validMsg = (P.ID()==23);
|
---|
812 | if (!validMsg) return;
|
---|
813 |
|
---|
814 | // Check number of data words (can nad be read in?)
|
---|
815 |
|
---|
816 | validMsg = (P.nDataWords()>=1);
|
---|
817 | if (!validMsg){
|
---|
818 | cerr << "RTCM2_23::extract: P.nDataWords()>=1" << endl;
|
---|
819 | return;
|
---|
820 | }
|
---|
821 |
|
---|
822 | // Antenna descriptor
|
---|
823 | antType = "";
|
---|
824 | nad = P.getUnsignedBits(3,5);
|
---|
825 |
|
---|
826 | // Check number of data words (can antenna description be read in?)
|
---|
827 | validMsg = ( P.nDataWords() >=
|
---|
828 | (unsigned int)ceil((nF1+nad*8)/(double)nBits) );
|
---|
829 |
|
---|
830 | if (!validMsg) return;
|
---|
831 |
|
---|
832 | for (unsigned int i=0;i<nad;i++)
|
---|
833 | antType += (char)P.getUnsignedBits(nF1+i*8,8);
|
---|
834 |
|
---|
835 | // Optional antenna serial numbers
|
---|
836 | if (P.getUnsignedBits(2,1)==1) {
|
---|
837 |
|
---|
838 | // Check number of data words (can nas be read in?)
|
---|
839 |
|
---|
840 | validMsg = ( P.nDataWords() >=
|
---|
841 | (unsigned int)ceil((nF1+nad*8+nF2)/(double)nBits) );
|
---|
842 | if (!validMsg) return;
|
---|
843 |
|
---|
844 | nas = P.getUnsignedBits(19+8*nad,5);
|
---|
845 |
|
---|
846 | // Check number of data words (can antenna serial number be read in?)
|
---|
847 |
|
---|
848 | validMsg = ( P.nDataWords() >=
|
---|
849 | (unsigned int)ceil((nF1+nad*8+nF2+nas*8)/(double)nBits) );
|
---|
850 | if (!validMsg) return;
|
---|
851 |
|
---|
852 | antSN = "";
|
---|
853 | for (unsigned int i=0;i<nas;i++)
|
---|
854 | antSN += (char)P.getUnsignedBits(nF1+8*nad+nF2+i*8,8);
|
---|
855 | };
|
---|
856 |
|
---|
857 | };
|
---|
858 |
|
---|
859 |
|
---|
860 | //------------------------------------------------------------------------------
|
---|
861 | //
|
---|
862 | // RTCM2_24 (class implementation)
|
---|
863 | //
|
---|
864 | // Purpose:
|
---|
865 | //
|
---|
866 | // A class for handling RTCM 2 Reference Station Antenna
|
---|
867 | // Reference Point Parameter messages
|
---|
868 | //
|
---|
869 | //------------------------------------------------------------------------------
|
---|
870 |
|
---|
871 | void RTCM2_24::extract(const RTCM2packet& P) {
|
---|
872 |
|
---|
873 | double dx,dy,dz;
|
---|
874 |
|
---|
875 | // Check validity, packet type and number of data words
|
---|
876 |
|
---|
877 | validMsg = (P.valid());
|
---|
878 | if (!validMsg) return;
|
---|
879 |
|
---|
880 | validMsg = (P.ID()==24);
|
---|
881 | if (!validMsg) return;
|
---|
882 |
|
---|
883 | validMsg = (P.nDataWords()==6);
|
---|
884 | if (!validMsg) return;
|
---|
885 |
|
---|
886 | // System indicator
|
---|
887 |
|
---|
888 | isGPS = (P.getUnsignedBits(118,1)==0);
|
---|
889 | isGLONASS = (P.getUnsignedBits(118,1)==1);
|
---|
890 |
|
---|
891 | // Antenna reference point coordinates
|
---|
892 |
|
---|
893 | x = 64.0*P.getBits( 0,32);
|
---|
894 | y = 64.0*P.getBits(40,32);
|
---|
895 | z = 64.0*P.getBits(80,32);
|
---|
896 | dx = P.getUnsignedBits( 32,6);
|
---|
897 | dy = P.getUnsignedBits( 72,6);
|
---|
898 | dz = P.getUnsignedBits(112,6);
|
---|
899 | x = 0.0001*( x + (x<0? -dx:+dx) );
|
---|
900 | y = 0.0001*( y + (y<0? -dy:+dy) );
|
---|
901 | z = 0.0001*( z + (z<0? -dz:+dz) );
|
---|
902 |
|
---|
903 | // Antenna Height
|
---|
904 |
|
---|
905 | if (P.getUnsignedBits(119,1)==1) {
|
---|
906 | h= P.getUnsignedBits(120,18)*0.0001;
|
---|
907 | };
|
---|
908 |
|
---|
909 |
|
---|
910 | };
|
---|
911 |
|
---|
912 |
|
---|
913 | //------------------------------------------------------------------------------
|
---|
914 | //
|
---|
915 | // RTCM2_Obs (class definition)
|
---|
916 | //
|
---|
917 | // Purpose:
|
---|
918 | //
|
---|
919 | // A class for handling blocks of RTCM2 18 & 19 packets that need to be
|
---|
920 | // combined to get a complete set of measurements
|
---|
921 | //
|
---|
922 | // Notes:
|
---|
923 | //
|
---|
924 | // The class collects L1/L2 code and phase measurements for GPS and GLONASS.
|
---|
925 | // Since the Multiple Message Indicator is inconsistently handled by various
|
---|
926 | // receivers we simply require code and phase on L1 and L2 for a complete
|
---|
927 | // set ob observations at a given epoch. GLONASS observations are optional,
|
---|
928 | // but all four types (code+phase,L1+L2) must be provided, if at least one
|
---|
929 | // is given. Also, the GLONASS message must follow the corresponding GPS
|
---|
930 | // message.
|
---|
931 | //
|
---|
932 | //------------------------------------------------------------------------------
|
---|
933 |
|
---|
934 | // Constructor
|
---|
935 |
|
---|
936 | RTCM2_Obs::RTCM2_Obs() {
|
---|
937 |
|
---|
938 | clear();
|
---|
939 |
|
---|
940 | };
|
---|
941 |
|
---|
942 | // Reset entire block
|
---|
943 |
|
---|
944 | void RTCM2_Obs::clear() {
|
---|
945 |
|
---|
946 | GPSonly = true;
|
---|
947 |
|
---|
948 | secs=0.0; // Seconds of hour (GPS time)
|
---|
949 | nSat=0; // Number of space vehicles
|
---|
950 | PRN.resize(0); // space vehicles
|
---|
951 | rng_C1.resize(0); // Pseudorange [m]
|
---|
952 | rng_P1.resize(0); // Pseudorange [m]
|
---|
953 | rng_P2.resize(0); // Pseudorange [m]
|
---|
954 | cph_L1.resize(0); // Carrier phase [m]
|
---|
955 | cph_L2.resize(0); // Carrier phase [m]
|
---|
956 | slip_L1.resize(0); // Slip counter
|
---|
957 | slip_L2.resize(0); // Slip counter
|
---|
958 |
|
---|
959 | availability.reset(); // Message status flags
|
---|
960 |
|
---|
961 | };
|
---|
962 |
|
---|
963 | // Availability checks
|
---|
964 |
|
---|
965 | bool RTCM2_Obs::anyGPS() const {
|
---|
966 |
|
---|
967 | return availability.test(bit_L1rngGPS) ||
|
---|
968 | availability.test(bit_L2rngGPS) ||
|
---|
969 | availability.test(bit_L1cphGPS) ||
|
---|
970 | availability.test(bit_L2cphGPS);
|
---|
971 |
|
---|
972 | };
|
---|
973 |
|
---|
974 | bool RTCM2_Obs::anyGLONASS() const {
|
---|
975 |
|
---|
976 | return availability.test(bit_L1rngGLO) ||
|
---|
977 | availability.test(bit_L2rngGLO) ||
|
---|
978 | availability.test(bit_L1cphGLO) ||
|
---|
979 | availability.test(bit_L2cphGLO);
|
---|
980 |
|
---|
981 | };
|
---|
982 |
|
---|
983 | bool RTCM2_Obs::allGPS() const {
|
---|
984 |
|
---|
985 | return availability.test(bit_L1rngGPS) &&
|
---|
986 | availability.test(bit_L2rngGPS) &&
|
---|
987 | availability.test(bit_L1cphGPS) &&
|
---|
988 | availability.test(bit_L2cphGPS);
|
---|
989 |
|
---|
990 | };
|
---|
991 |
|
---|
992 | bool RTCM2_Obs::allGLONASS() const {
|
---|
993 |
|
---|
994 | return availability.test(bit_L1rngGLO) &&
|
---|
995 | availability.test(bit_L2rngGLO) &&
|
---|
996 | availability.test(bit_L1cphGLO) &&
|
---|
997 | availability.test(bit_L2cphGLO);
|
---|
998 |
|
---|
999 | };
|
---|
1000 |
|
---|
1001 | // Validity
|
---|
1002 |
|
---|
1003 | bool RTCM2_Obs::valid() const {
|
---|
1004 |
|
---|
1005 | return ( allGPS() && ( GPSonly || allGLONASS() ) );
|
---|
1006 |
|
---|
1007 | };
|
---|
1008 |
|
---|
1009 |
|
---|
1010 | //
|
---|
1011 | // Extract RTCM2 18 & 19 messages and store relevant data for future use
|
---|
1012 | //
|
---|
1013 |
|
---|
1014 | void RTCM2_Obs::extract(const RTCM2packet& P) {
|
---|
1015 |
|
---|
1016 | bool isGPS,isCAcode,isL1,isOth;
|
---|
1017 | int NSat,idx;
|
---|
1018 | int sid,prn,slip_cnt;
|
---|
1019 | double t,rng,cph;
|
---|
1020 |
|
---|
1021 | // Check validity and packet type
|
---|
1022 |
|
---|
1023 | if ( ! ( P.valid() &&
|
---|
1024 | (P.ID()==18 || P.ID()==19) ) ) return;
|
---|
1025 |
|
---|
1026 | // Check number of data words, message starts with 1 DW for epoch, then each
|
---|
1027 | // satellite brings 2 DW,
|
---|
1028 | // Do not start decoding if less than 3 DW are in package
|
---|
1029 |
|
---|
1030 | if ( P.nDataWords()<3 ) {
|
---|
1031 | #if ( DEBUG > 0 )
|
---|
1032 | cerr << "Error in RTCM2_Obs::extract(): less than 3 DW ("
|
---|
1033 | << P.nDataWords() << ") detected" << endl;
|
---|
1034 | #endif
|
---|
1035 |
|
---|
1036 | return;
|
---|
1037 | };
|
---|
1038 |
|
---|
1039 | // Check if number of data words is odd number
|
---|
1040 |
|
---|
1041 | if ( P.nDataWords()%2==0 ){
|
---|
1042 | #if ( DEBUG > 0 )
|
---|
1043 | cerr << "Error in RTCM2_Obs::extract(): odd number of DW ("
|
---|
1044 | << P.nDataWords() << ") detected" << endl;
|
---|
1045 | #endif
|
---|
1046 |
|
---|
1047 | return;
|
---|
1048 | };
|
---|
1049 |
|
---|
1050 | // Clear previous data if block was already complete
|
---|
1051 |
|
---|
1052 | if (valid()) clear();
|
---|
1053 |
|
---|
1054 | // Process carrier phase message
|
---|
1055 |
|
---|
1056 | if ( P.ID()==18 ) {
|
---|
1057 |
|
---|
1058 | // Number of satellites in current message
|
---|
1059 | NSat = (P.nDataWords()-1)/2;
|
---|
1060 |
|
---|
1061 | // Current epoch (mod 3600 sec)
|
---|
1062 | t = 0.6*P.modZCount()
|
---|
1063 | + P.getUnsignedBits(4,20)*1.0e-6;
|
---|
1064 |
|
---|
1065 | #if (ROUND_EPOCH==1)
|
---|
1066 | // SC-104 V2.3 4-42 Note 1 4. Assume measurements at hard edges
|
---|
1067 | // of receiver clock with minimum divisions of 10ms
|
---|
1068 | // and clock error less then recommended 1.1ms
|
---|
1069 | // Hence, round time tag to 100 ms
|
---|
1070 | t = floor(t*100.0+0.5)/100.0;
|
---|
1071 | #endif
|
---|
1072 |
|
---|
1073 | // Frequency (exit if neither L1 nor L2)
|
---|
1074 | isL1 = ( P.getUnsignedBits(0,1)==0 );
|
---|
1075 | isOth = ( P.getUnsignedBits(1,1)==1 );
|
---|
1076 | if (isOth) return;
|
---|
1077 |
|
---|
1078 | // Constellation (for first satellite in message)
|
---|
1079 | isGPS = ( P.getUnsignedBits(26,1)==0 );
|
---|
1080 | GPSonly = GPSonly && isGPS;
|
---|
1081 |
|
---|
1082 | // Multiple Message Indicator (only checked for first satellite)
|
---|
1083 | // pendingMsg = ( P.getUnsignedBits(24,1)==1 );
|
---|
1084 |
|
---|
1085 | // Handle epoch: store epoch of first GPS message and
|
---|
1086 | // check consistency of subsequent messages. GLONASS time tags
|
---|
1087 | // are different and have to be ignored
|
---|
1088 | if (isGPS) {
|
---|
1089 | if ( nSat==0 ) {
|
---|
1090 | secs = t; // Store epoch
|
---|
1091 | }
|
---|
1092 | // else if (t!=secs) {
|
---|
1093 | else if (abs(t-secs)>1e-6) {
|
---|
1094 | clear(); secs = t; // Clear all data, then store epoch
|
---|
1095 | };
|
---|
1096 | };
|
---|
1097 |
|
---|
1098 | // Discard GLONASS observations if no prior GPS observations
|
---|
1099 | // are available
|
---|
1100 | if (!isGPS && !anyGPS() ) return;
|
---|
1101 |
|
---|
1102 | // Set availability flags
|
---|
1103 |
|
---|
1104 | if ( isL1 && isGPS) availability.set(bit_L1cphGPS);
|
---|
1105 | if (!isL1 && isGPS) availability.set(bit_L2cphGPS);
|
---|
1106 | if ( isL1 && !isGPS) availability.set(bit_L1cphGLO);
|
---|
1107 | if (!isL1 && !isGPS) availability.set(bit_L2cphGLO);
|
---|
1108 |
|
---|
1109 | #if ( DEBUG > 0 )
|
---|
1110 | cerr << "RTCM2_Obs::extract(): availability "
|
---|
1111 | << bitset<8>(availability) << endl;
|
---|
1112 | #endif
|
---|
1113 |
|
---|
1114 |
|
---|
1115 | // Process all satellites
|
---|
1116 |
|
---|
1117 | for (int iSat=0;iSat<NSat;iSat++){
|
---|
1118 |
|
---|
1119 | // Code type
|
---|
1120 | isCAcode = ( P.getUnsignedBits(iSat*48+25,1)==0 );
|
---|
1121 |
|
---|
1122 | // Satellite
|
---|
1123 | sid = P.getUnsignedBits(iSat*48+27,5);
|
---|
1124 | if (sid==0) sid=32;
|
---|
1125 |
|
---|
1126 | prn = (isGPS? sid : sid+200 );
|
---|
1127 |
|
---|
1128 | // Carrier phase measurement (mod 2^23 [cy]; sign matched to range)
|
---|
1129 | cph = -P.getBits(iSat*48+40,32)/256.0;
|
---|
1130 |
|
---|
1131 | // Slip counter
|
---|
1132 | slip_cnt = P.getUnsignedBits(iSat*48+35,5);
|
---|
1133 |
|
---|
1134 | // Is this a new PRN?
|
---|
1135 | idx=-1;
|
---|
1136 | for (unsigned int i=0;i<PRN.size();i++) {
|
---|
1137 | if (PRN[i]==prn) { idx=i; break; };
|
---|
1138 | };
|
---|
1139 | if (idx==-1) {
|
---|
1140 | // Insert new sat at end of list
|
---|
1141 | nSat++; idx = nSat-1;
|
---|
1142 | PRN.push_back(prn);
|
---|
1143 | rng_C1.push_back(0.0);
|
---|
1144 | rng_P1.push_back(0.0);
|
---|
1145 | rng_P2.push_back(0.0);
|
---|
1146 | cph_L1.push_back(0.0);
|
---|
1147 | cph_L2.push_back(0.0);
|
---|
1148 | slip_L1.push_back(-1);
|
---|
1149 | slip_L2.push_back(-1);
|
---|
1150 | };
|
---|
1151 |
|
---|
1152 | // Store measurement
|
---|
1153 | if (isL1) {
|
---|
1154 | cph_L1[idx] = cph;
|
---|
1155 | slip_L1[idx] = slip_cnt;
|
---|
1156 | }
|
---|
1157 | else {
|
---|
1158 | cph_L2[idx] = cph;
|
---|
1159 | slip_L2[idx] = slip_cnt;
|
---|
1160 | };
|
---|
1161 |
|
---|
1162 | };
|
---|
1163 |
|
---|
1164 | };
|
---|
1165 |
|
---|
1166 |
|
---|
1167 | // Process pseudorange message
|
---|
1168 |
|
---|
1169 | if ( P.ID()==19 ) {
|
---|
1170 |
|
---|
1171 | // Number of satellites in current message
|
---|
1172 | NSat = (P.nDataWords()-1)/2;
|
---|
1173 |
|
---|
1174 | // Current epoch (mod 3600 sec)
|
---|
1175 | t = 0.6*P.modZCount()
|
---|
1176 | + P.getUnsignedBits(4,20)*1.0e-6;
|
---|
1177 |
|
---|
1178 | #if (ROUND_EPOCH==1)
|
---|
1179 | // SC-104 V2.3 4-42 Note 1 4. Assume measurements at hard edges
|
---|
1180 | // of receiver clock with minimum divisions of 10ms
|
---|
1181 | // and clock error less then recommended 1.1ms
|
---|
1182 | // Hence, round time tag to 100 ms
|
---|
1183 | t = floor(t*100.0+0.5)/100.0;
|
---|
1184 | #endif
|
---|
1185 |
|
---|
1186 | // Frequency (exit if neither L1 nor L2)
|
---|
1187 | isL1 = ( P.getUnsignedBits(0,1)==0 );
|
---|
1188 | isOth = ( P.getUnsignedBits(1,1)==1 );
|
---|
1189 | if (isOth) return;
|
---|
1190 |
|
---|
1191 | #if (FIX_TRIMBLE_4000SSI==1)
|
---|
1192 | // Fix for data streams originating from TRIMBLE_4000SSI receivers.
|
---|
1193 | // GPS PRN32 is erroneously flagged as GLONASS satellite in the C/A
|
---|
1194 | // pseudorange messages. We therefore use a majority voting to
|
---|
1195 | // determine the true constellation for this message.
|
---|
1196 | // This fix is only required for Trimble4000SSI receivers but can also
|
---|
1197 | // be used with all other known receivers.
|
---|
1198 | int nGPS=0;
|
---|
1199 | for(int iSat=0; iSat<NSat; iSat++){
|
---|
1200 | // Constellation (for each satellite in message)
|
---|
1201 | isGPS = ( P.getUnsignedBits(iSat*48+26,1)==0 );
|
---|
1202 | if(isGPS) nGPS++;
|
---|
1203 | };
|
---|
1204 | isGPS = (2*nGPS>NSat);
|
---|
1205 | #else
|
---|
1206 | // Constellation (for first satellite in message)
|
---|
1207 | isGPS = ( P.getUnsignedBits(26,1)==0 );
|
---|
1208 | #endif
|
---|
1209 | GPSonly = GPSonly && isGPS;
|
---|
1210 |
|
---|
1211 | // Multiple Message Indicator (only checked for first satellite)
|
---|
1212 | // pendingMsg = ( P.getUnsignedBits(24,1)==1 );
|
---|
1213 |
|
---|
1214 | // Handle epoch: store epoch of first GPS message and
|
---|
1215 | // check consistency of subsequent messages. GLONASS time tags
|
---|
1216 | // are different and have to be ignored
|
---|
1217 | if (isGPS) {
|
---|
1218 | if ( nSat==0 ) {
|
---|
1219 | secs = t; // Store epoch
|
---|
1220 | }
|
---|
1221 | // else if (t!=secs) {
|
---|
1222 | else if (abs(t-secs)>1e-6) {
|
---|
1223 | clear(); secs = t; // Clear all data, then store epoch
|
---|
1224 | };
|
---|
1225 | };
|
---|
1226 |
|
---|
1227 | // Discard GLONASS observations if no prior GPS observations
|
---|
1228 | // are available
|
---|
1229 | if (!isGPS && !anyGPS() ) return;
|
---|
1230 |
|
---|
1231 | // Set availability flags
|
---|
1232 | if ( isL1 && isGPS) availability.set(bit_L1rngGPS);
|
---|
1233 | if (!isL1 && isGPS) availability.set(bit_L2rngGPS);
|
---|
1234 | if ( isL1 && !isGPS) availability.set(bit_L1rngGLO);
|
---|
1235 | if (!isL1 && !isGPS) availability.set(bit_L2rngGLO);
|
---|
1236 |
|
---|
1237 | #if ( DEBUG > 0 )
|
---|
1238 | cerr << "RTCM2_Obs::extract(): availability "
|
---|
1239 | << bitset<8>(availability) << endl;
|
---|
1240 | #endif
|
---|
1241 |
|
---|
1242 | // Process all satellites
|
---|
1243 |
|
---|
1244 | for (int iSat=0;iSat<NSat;iSat++){
|
---|
1245 |
|
---|
1246 | // Code type
|
---|
1247 | isCAcode = ( P.getUnsignedBits(iSat*48+25,1)==0 );
|
---|
1248 |
|
---|
1249 | // Satellite
|
---|
1250 | sid = P.getUnsignedBits(iSat*48+27,5);
|
---|
1251 | if (sid==0) sid=32;
|
---|
1252 | prn = (isGPS? sid : sid+200 );
|
---|
1253 |
|
---|
1254 | // Pseudorange measurement [m]
|
---|
1255 | rng = P.getUnsignedBits(iSat*48+40,32)*0.02;
|
---|
1256 |
|
---|
1257 | // Is this a new PRN?
|
---|
1258 | idx=-1;
|
---|
1259 | for (unsigned int i=0;i<PRN.size();i++) {
|
---|
1260 | if (PRN[i]==prn) { idx=i; break; };
|
---|
1261 | };
|
---|
1262 | if (idx==-1) {
|
---|
1263 | // Insert new sat at end of list
|
---|
1264 | nSat++; idx = nSat-1;
|
---|
1265 | PRN.push_back(prn);
|
---|
1266 | rng_C1.push_back(0.0);
|
---|
1267 | rng_P1.push_back(0.0);
|
---|
1268 | rng_P2.push_back(0.0);
|
---|
1269 | cph_L1.push_back(0.0);
|
---|
1270 | cph_L2.push_back(0.0);
|
---|
1271 | slip_L1.push_back(-1);
|
---|
1272 | slip_L2.push_back(-1);
|
---|
1273 | };
|
---|
1274 |
|
---|
1275 | // Store measurement
|
---|
1276 | if (isL1) {
|
---|
1277 | if (isCAcode) {
|
---|
1278 | rng_C1[idx] = rng;
|
---|
1279 | }
|
---|
1280 | else {
|
---|
1281 | rng_P1[idx] = rng;
|
---|
1282 | }
|
---|
1283 | }
|
---|
1284 | else {
|
---|
1285 | rng_P2[idx] = rng;
|
---|
1286 | };
|
---|
1287 |
|
---|
1288 | };
|
---|
1289 |
|
---|
1290 | };
|
---|
1291 |
|
---|
1292 | };
|
---|
1293 |
|
---|
1294 | //
|
---|
1295 | // Resolution of 2^24 cy carrier phase ambiguity
|
---|
1296 | // caused by 32-bit data field restrictions
|
---|
1297 | //
|
---|
1298 | // Note: the RTCM standard specifies an ambiguity of +/-2^23 cy.
|
---|
1299 | // However, numerous receivers generate data in the +/-2^22 cy range.
|
---|
1300 | // A reduced ambiguity of 2^23 cy appears compatible with both cases.
|
---|
1301 | //
|
---|
1302 |
|
---|
1303 | double RTCM2_Obs::resolvedPhase_L1(int i) const {
|
---|
1304 |
|
---|
1305 | //const double ambig = pow(2.0,24); // as per RTCM2 spec
|
---|
1306 | const double ambig = pow(2.0,23); // used by many receivers
|
---|
1307 |
|
---|
1308 | double rng;
|
---|
1309 | double n;
|
---|
1310 |
|
---|
1311 | if (!valid() || i<0 || i>nSat-1) return 0.0;
|
---|
1312 |
|
---|
1313 | rng = rng_C1[i];
|
---|
1314 | if (rng==0.0) rng = rng_P1[i];
|
---|
1315 | if (rng==0.0) return 0.0;
|
---|
1316 |
|
---|
1317 | n = floor( (rng/lambda_L1-cph_L1[i]) / ambig + 0.5 );
|
---|
1318 |
|
---|
1319 | return cph_L1[i] + n*ambig;
|
---|
1320 |
|
---|
1321 | };
|
---|
1322 |
|
---|
1323 | double RTCM2_Obs::resolvedPhase_L2(int i) const {
|
---|
1324 |
|
---|
1325 | //const double ambig = pow(2.0,24); // as per RTCM2 spec
|
---|
1326 | const double ambig = pow(2.0,23); // used by many receivers
|
---|
1327 |
|
---|
1328 | double rng;
|
---|
1329 | double n;
|
---|
1330 |
|
---|
1331 | if (!valid() || i<0 || i>nSat-1) return 0.0;
|
---|
1332 |
|
---|
1333 | rng = rng_C1[i];
|
---|
1334 | if (rng==0.0) rng = rng_P1[i];
|
---|
1335 | if (rng==0.0) return 0.0;
|
---|
1336 |
|
---|
1337 | n = floor( (rng/lambda_L2-cph_L2[i]) / ambig + 0.5 );
|
---|
1338 |
|
---|
1339 | return cph_L2[i] + n*ambig;
|
---|
1340 |
|
---|
1341 | };
|
---|
1342 |
|
---|
1343 | //
|
---|
1344 | // Resolution of epoch using reference date (GPS week and secs)
|
---|
1345 | //
|
---|
1346 |
|
---|
1347 | void RTCM2_Obs::resolveEpoch (int refWeek, double refSecs,
|
---|
1348 | int& epochWeek, double& epochSecs ) const {
|
---|
1349 |
|
---|
1350 | const double secsPerWeek = 604800.0;
|
---|
1351 |
|
---|
1352 | epochWeek = refWeek;
|
---|
1353 | epochSecs = secs + 3600.0*(floor((refSecs-secs)/3600.0+0.5));
|
---|
1354 |
|
---|
1355 | if (epochSecs<0 ) { epochWeek--; epochSecs+=secsPerWeek; };
|
---|
1356 | if (epochSecs>secsPerWeek) { epochWeek++; epochSecs-=secsPerWeek; };
|
---|
1357 |
|
---|
1358 | };
|
---|
1359 |
|
---|
1360 | }; // End of namespace rtcm2
|
---|