source: ntrip/trunk/BNC/src/PPP_SSR_I/pppFilter.cpp@ 6875

Last change on this file since 6875 was 6875, checked in by stuerze, 9 years ago

some renaming

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 35.9 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: t_pppParam, t_pppFilter
30 *
31 * Purpose: Model for PPP
32 *
33 * Author: L. Mervart
34 *
35 * Created: 01-Dec-2009
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iomanip>
42#include <cmath>
43#include <sstream>
44#include <newmatio.h>
45#include <newmatap.h>
46
47#include "pppFilter.h"
48#include "pppClient.h"
49#include "bncutils.h"
50#include "bncantex.h"
51#include "pppOptions.h"
52#include "pppModel.h"
53
54using namespace BNC_PPP;
55using namespace std;
56
57const double MAXRES_CODE = 2.98 * 3.0;
58const double MAXRES_PHASE_GPS = 2.98 * 0.03;
59const double MAXRES_PHASE_GLONASS = 2.98 * 0.03;
60const double GLONASS_WEIGHT_FACTOR = 1.0;
61
62#define LOG (_pppClient->log())
63#define OPT (_pppClient->opt())
64
65// Constructor
66////////////////////////////////////////////////////////////////////////////
67t_pppParam::t_pppParam(t_pppParam::parType typeIn, int indexIn,
68 const QString& prnIn) {
69 type = typeIn;
70 index = indexIn;
71 prn = prnIn;
72 index_old = 0;
73 xx = 0.0;
74 numEpo = 0;
75}
76
77// Destructor
78////////////////////////////////////////////////////////////////////////////
79t_pppParam::~t_pppParam() {
80}
81
82// Partial
83////////////////////////////////////////////////////////////////////////////
84double t_pppParam::partial(t_satData* satData, bool phase) {
85
86 Tracer tracer("t_pppParam::partial");
87
88 // Coordinates
89 // -----------
90 if (type == CRD_X) {
91 return (xx - satData->xx(1)) / satData->rho;
92 }
93 else if (type == CRD_Y) {
94 return (xx - satData->xx(2)) / satData->rho;
95 }
96 else if (type == CRD_Z) {
97 return (xx - satData->xx(3)) / satData->rho;
98 }
99
100 // Receiver Clocks
101 // ---------------
102 else if (type == RECCLK) {
103 return 1.0;
104 }
105
106 // Troposphere
107 // -----------
108 else if (type == TROPO) {
109 return 1.0 / sin(satData->eleSat);
110 }
111
112 // Glonass Offset
113 // --------------
114 else if (type == GLONASS_OFFSET) {
115 if (satData->prn[0] == 'R') {
116 return 1.0;
117 }
118 else {
119 return 0.0;
120 }
121 }
122
123 // Galileo Offset
124 // --------------
125 else if (type == GALILEO_OFFSET) {
126 if (satData->prn[0] == 'E') {
127 return 1.0;
128 }
129 else {
130 return 0.0;
131 }
132 }
133
134 // Ambiguities
135 // -----------
136 else if (type == AMB_L3) {
137 if (phase && satData->prn == prn) {
138 return 1.0;
139 }
140 else {
141 return 0.0;
142 }
143 }
144
145 // Default return
146 // --------------
147 return 0.0;
148}
149
150// Constructor
151////////////////////////////////////////////////////////////////////////////
152t_pppFilter::t_pppFilter(t_pppClient* pppClient) {
153
154 _pppClient = pppClient;
155 _tides = new t_tides();
156
157 // Antenna Name, ANTEX File
158 // ------------------------
159 _antex = 0;
160 if (!OPT->_antexFileName.empty()) {
161 _antex = new bncAntex(OPT->_antexFileName.c_str());
162 }
163
164 // Bancroft Coordinates
165 // --------------------
166 _xcBanc.ReSize(4); _xcBanc = 0.0;
167 _ellBanc.ReSize(3); _ellBanc = 0.0;
168
169 // Save copy of data (used in outlier detection)
170 // ---------------------------------------------
171 _epoData_sav = new t_epoData();
172
173 // Some statistics
174 // ---------------
175 _neu.ReSize(3); _neu = 0.0;
176 _numSat = 0;
177 _pDop = 0.0;
178}
179
180// Destructor
181////////////////////////////////////////////////////////////////////////////
182t_pppFilter::~t_pppFilter() {
183 delete _tides;
184 delete _antex;
185 for (int iPar = 1; iPar <= _params.size(); iPar++) {
186 delete _params[iPar-1];
187 }
188 for (int iPar = 1; iPar <= _params_sav.size(); iPar++) {
189 delete _params_sav[iPar-1];
190 }
191 delete _epoData_sav;
192}
193
194// Reset Parameters and Variance-Covariance Matrix
195////////////////////////////////////////////////////////////////////////////
196void t_pppFilter::reset() {
197
198 Tracer tracer("t_pppFilter::reset");
199
200 double lastTrp = 0.0;
201 for (int ii = 0; ii < _params.size(); ii++) {
202 t_pppParam* pp = _params[ii];
203 if (pp->type == t_pppParam::TROPO) {
204 lastTrp = pp->xx;
205 }
206 delete pp;
207 }
208 _params.clear();
209
210 int nextPar = 0;
211 _params.push_back(new t_pppParam(t_pppParam::CRD_X, ++nextPar, ""));
212 _params.push_back(new t_pppParam(t_pppParam::CRD_Y, ++nextPar, ""));
213 _params.push_back(new t_pppParam(t_pppParam::CRD_Z, ++nextPar, ""));
214 _params.push_back(new t_pppParam(t_pppParam::RECCLK, ++nextPar, ""));
215 if (OPT->estTrp()) {
216 _params.push_back(new t_pppParam(t_pppParam::TROPO, ++nextPar, ""));
217 }
218 if (OPT->useSystem('R')) {
219 _params.push_back(new t_pppParam(t_pppParam::GLONASS_OFFSET, ++nextPar, ""));
220 }
221 if (OPT->useSystem('E')) {
222 _params.push_back(new t_pppParam(t_pppParam::GALILEO_OFFSET, ++nextPar, ""));
223 }
224
225 _QQ.ReSize(_params.size());
226 _QQ = 0.0;
227 for (int iPar = 1; iPar <= _params.size(); iPar++) {
228 t_pppParam* pp = _params[iPar-1];
229 pp->xx = 0.0;
230 if (pp->isCrd()) {
231 _QQ(iPar,iPar) = OPT->_aprSigCrd(1) * OPT->_aprSigCrd(1);
232 }
233 else if (pp->type == t_pppParam::RECCLK) {
234 _QQ(iPar,iPar) = OPT->_noiseClk * OPT->_noiseClk;
235 }
236 else if (pp->type == t_pppParam::TROPO) {
237 _QQ(iPar,iPar) = OPT->_aprSigTrp * OPT->_aprSigTrp;
238 pp->xx = lastTrp;
239 }
240 else if (pp->type == t_pppParam::GLONASS_OFFSET) {
241 _QQ(iPar,iPar) = 1000.0 * 1000.0;
242 }
243 else if (pp->type == t_pppParam::GALILEO_OFFSET) {
244 _QQ(iPar,iPar) = 1000.0 * 1000.0;
245 }
246 }
247}
248
249// Bancroft Solution
250////////////////////////////////////////////////////////////////////////////
251t_irc t_pppFilter::cmpBancroft(t_epoData* epoData) {
252
253 Tracer tracer("t_pppFilter::cmpBancroft");
254
255 if (int(epoData->sizeSys('G')) < OPT->_minObs) {
256 LOG << "t_pppFilter::cmpBancroft: not enough data\n";
257 return failure;
258 }
259
260 Matrix BB(epoData->sizeSys('G'), 4);
261
262 QMapIterator<QString, t_satData*> it(epoData->satData);
263 int iObsBanc = 0;
264 while (it.hasNext()) {
265 it.next();
266 t_satData* satData = it.value();
267 if (satData->system() == 'G') {
268 ++iObsBanc;
269 QString prn = it.key();
270 BB(iObsBanc, 1) = satData->xx(1);
271 BB(iObsBanc, 2) = satData->xx(2);
272 BB(iObsBanc, 3) = satData->xx(3);
273 BB(iObsBanc, 4) = satData->P3 + satData->clk;
274 }
275 }
276
277 bancroft(BB, _xcBanc);
278
279 // Ellipsoidal Coordinates
280 // ------------------------
281 xyz2ell(_xcBanc.data(), _ellBanc.data());
282
283 // Compute Satellite Elevations
284 // ----------------------------
285 QMutableMapIterator<QString, t_satData*> im(epoData->satData);
286 while (im.hasNext()) {
287 im.next();
288 t_satData* satData = im.value();
289 cmpEle(satData);
290 if (satData->eleSat < OPT->_minEle) {
291 delete satData;
292 im.remove();
293 }
294 }
295
296 return success;
297}
298
299// Computed Value
300////////////////////////////////////////////////////////////////////////////
301double t_pppFilter::cmpValue(t_satData* satData, bool phase) {
302
303 Tracer tracer("t_pppFilter::cmpValue");
304
305 ColumnVector xRec(3);
306 xRec(1) = x();
307 xRec(2) = y();
308 xRec(3) = z();
309
310 double rho0 = (satData->xx - xRec).norm_Frobenius();
311 double dPhi = t_CST::omega * rho0 / t_CST::c;
312
313 xRec(1) = x() * cos(dPhi) - y() * sin(dPhi);
314 xRec(2) = y() * cos(dPhi) + x() * sin(dPhi);
315 xRec(3) = z();
316
317 xRec += _tides->displacement(_time, xRec);
318
319 satData->rho = (satData->xx - xRec).norm_Frobenius();
320
321 double tropDelay = delay_saast(satData->eleSat) +
322 trp() / sin(satData->eleSat);
323
324 double wind = 0.0;
325 if (phase) {
326 wind = windUp(satData->prn, satData->xx, xRec) * satData->lambda3;
327 }
328
329 double offset = 0.0;
330 t_frequency::type frqA = t_frequency::G1;
331 t_frequency::type frqB = t_frequency::G2;
332 if (satData->prn[0] == 'R') {
333 offset = Glonass_offset();
334 frqA = t_frequency::R1;
335 frqB = t_frequency::R2;
336 }
337 else if (satData->prn[0] == 'E') {
338 offset = Galileo_offset();
339 //frqA = t_frequency::E1; as soon as available
340 //frqB = t_frequency::E5; -"-
341 }
342
343 double phaseCenter = 0.0;
344 if (_antex) {
345 bool found;
346 phaseCenter = satData->lkA * _antex->rcvCorr(OPT->_antNameRover, frqA,
347 satData->eleSat, satData->azSat,
348 found)
349 + satData->lkB * _antex->rcvCorr(OPT->_antNameRover, frqB,
350 satData->eleSat, satData->azSat,
351 found);
352 if (!found) {
353 LOG << "ANTEX: antenna >" << OPT->_antNameRover << "< not found\n";
354 }
355 }
356
357 double antennaOffset = 0.0;
358 double cosa = cos(satData->azSat);
359 double sina = sin(satData->azSat);
360 double cose = cos(satData->eleSat);
361 double sine = sin(satData->eleSat);
362 antennaOffset = -OPT->_neuEccRover(1) * cosa*cose
363 -OPT->_neuEccRover(2) * sina*cose
364 -OPT->_neuEccRover(3) * sine;
365
366 return satData->rho + phaseCenter + antennaOffset + clk()
367 + offset - satData->clk + tropDelay + wind;
368}
369
370// Tropospheric Model (Saastamoinen)
371////////////////////////////////////////////////////////////////////////////
372double t_pppFilter::delay_saast(double Ele) {
373
374 Tracer tracer("t_pppFilter::delay_saast");
375
376 double xyz[3];
377 xyz[0] = x();
378 xyz[1] = y();
379 xyz[2] = z();
380 double ell[3];
381 xyz2ell(xyz, ell);
382 double height = ell[2];
383
384 double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225);
385 double TT = 18.0 - height * 0.0065 + 273.15;
386 double hh = 50.0 * exp(-6.396e-4 * height);
387 double ee = hh / 100.0 * exp(-37.2465 + 0.213166*TT - 0.000256908*TT*TT);
388
389 double h_km = height / 1000.0;
390
391 if (h_km < 0.0) h_km = 0.0;
392 if (h_km > 5.0) h_km = 5.0;
393 int ii = int(h_km + 1);
394 double href = ii - 1;
395
396 double bCor[6];
397 bCor[0] = 1.156;
398 bCor[1] = 1.006;
399 bCor[2] = 0.874;
400 bCor[3] = 0.757;
401 bCor[4] = 0.654;
402 bCor[5] = 0.563;
403
404 double BB = bCor[ii-1] + (bCor[ii]-bCor[ii-1]) * (h_km - href);
405
406 double zen = M_PI/2.0 - Ele;
407
408 return (0.002277/cos(zen)) * (pp + ((1255.0/TT)+0.05)*ee - BB*(tan(zen)*tan(zen)));
409}
410
411// Prediction Step of the Filter
412////////////////////////////////////////////////////////////////////////////
413void t_pppFilter::predict(int iPhase, t_epoData* epoData) {
414
415 Tracer tracer("t_pppFilter::predict");
416
417 if (iPhase == 0) {
418
419 const double maxSolGap = 0.0;
420
421 bool firstCrd = false;
422 if (!_lastTimeOK.valid() || (maxSolGap > 0.0 && _time - _lastTimeOK > maxSolGap)) {
423 firstCrd = true;
424 _startTime = epoData->tt;
425 reset();
426 }
427
428 // Use different white noise for Quick-Start mode
429 // ----------------------------------------------
430 double sigCrdP_used = OPT->_noiseCrd(1);
431 if ( OPT->_seedingTime > 0.0 && OPT->_seedingTime > (epoData->tt - _startTime) ) {
432 sigCrdP_used = 0.0;
433 }
434
435 // Predict Parameter values, add white noise
436 // -----------------------------------------
437 for (int iPar = 1; iPar <= _params.size(); iPar++) {
438 t_pppParam* pp = _params[iPar-1];
439
440 // Coordinates
441 // -----------
442 if (pp->type == t_pppParam::CRD_X) {
443 if (firstCrd) {
444 if (OPT->xyzAprRoverSet()) {
445 pp->xx = OPT->_xyzAprRover[0];
446 }
447 else {
448 pp->xx = _xcBanc(1);
449 }
450 }
451 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
452 }
453 else if (pp->type == t_pppParam::CRD_Y) {
454 if (firstCrd) {
455 if (OPT->xyzAprRoverSet()) {
456 pp->xx = OPT->_xyzAprRover[1];
457 }
458 else {
459 pp->xx = _xcBanc(2);
460 }
461 }
462 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
463 }
464 else if (pp->type == t_pppParam::CRD_Z) {
465 if (firstCrd) {
466 if (OPT->xyzAprRoverSet()) {
467 pp->xx = OPT->_xyzAprRover[2];
468 }
469 else {
470 pp->xx = _xcBanc(3);
471 }
472 }
473 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
474 }
475
476 // Receiver Clocks
477 // ---------------
478 else if (pp->type == t_pppParam::RECCLK) {
479 pp->xx = _xcBanc(4);
480 for (int jj = 1; jj <= _params.size(); jj++) {
481 _QQ(iPar, jj) = 0.0;
482 }
483 _QQ(iPar,iPar) = OPT->_noiseClk * OPT->_noiseClk;
484 }
485
486 // Tropospheric Delay
487 // ------------------
488 else if (pp->type == t_pppParam::TROPO) {
489 _QQ(iPar,iPar) += OPT->_noiseTrp * OPT->_noiseTrp;
490 }
491
492 // Glonass Offset
493 // --------------
494 else if (pp->type == t_pppParam::GLONASS_OFFSET) {
495 pp->xx = 0.0;
496 for (int jj = 1; jj <= _params.size(); jj++) {
497 _QQ(iPar, jj) = 0.0;
498 }
499 _QQ(iPar,iPar) = 1000.0 * 1000.0;
500 }
501
502 // Galileo Offset
503 // --------------
504 else if (pp->type == t_pppParam::GALILEO_OFFSET) {
505 _QQ(iPar,iPar) += 0.1 * 0.1;
506 }
507 }
508 }
509
510 // Add New Ambiguities if necessary
511 // --------------------------------
512 if (OPT->ambLCs('G').size() || OPT->ambLCs('R').size() || OPT->ambLCs('E').size()) {
513
514 // Make a copy of QQ and xx, set parameter indices
515 // -----------------------------------------------
516 SymmetricMatrix QQ_old = _QQ;
517
518 for (int iPar = 1; iPar <= _params.size(); iPar++) {
519 _params[iPar-1]->index_old = _params[iPar-1]->index;
520 _params[iPar-1]->index = 0;
521 }
522
523 // Remove Ambiguity Parameters without observations
524 // ------------------------------------------------
525 int iPar = 0;
526 QMutableVectorIterator<t_pppParam*> im(_params);
527 while (im.hasNext()) {
528 t_pppParam* par = im.next();
529 bool removed = false;
530 if (par->type == t_pppParam::AMB_L3) {
531 if (epoData->satData.find(par->prn) == epoData->satData.end()) {
532 removed = true;
533 delete par;
534 im.remove();
535 }
536 }
537 if (! removed) {
538 ++iPar;
539 par->index = iPar;
540 }
541 }
542
543 // Add new ambiguity parameters
544 // ----------------------------
545 QMapIterator<QString, t_satData*> it(epoData->satData);
546 while (it.hasNext()) {
547 it.next();
548 t_satData* satData = it.value();
549 addAmb(satData);
550 }
551
552 int nPar = _params.size();
553 _QQ.ReSize(nPar); _QQ = 0.0;
554 for (int i1 = 1; i1 <= nPar; i1++) {
555 t_pppParam* p1 = _params[i1-1];
556 if (p1->index_old != 0) {
557 _QQ(p1->index, p1->index) = QQ_old(p1->index_old, p1->index_old);
558 for (int i2 = 1; i2 <= nPar; i2++) {
559 t_pppParam* p2 = _params[i2-1];
560 if (p2->index_old != 0) {
561 _QQ(p1->index, p2->index) = QQ_old(p1->index_old, p2->index_old);
562 }
563 }
564 }
565 }
566
567 for (int ii = 1; ii <= nPar; ii++) {
568 t_pppParam* par = _params[ii-1];
569 if (par->index_old == 0) {
570 _QQ(par->index, par->index) = OPT->_aprSigAmb * OPT->_aprSigAmb;
571 }
572 par->index_old = par->index;
573 }
574 }
575}
576
577// Update Step of the Filter (currently just a single-epoch solution)
578////////////////////////////////////////////////////////////////////////////
579t_irc t_pppFilter::update(t_epoData* epoData) {
580
581 Tracer tracer("t_pppFilter::update");
582
583 _time = epoData->tt; // current epoch time
584
585 if (OPT->useOrbClkCorr()) {
586 LOG << "Precise Point Positioning of Epoch " << _time.timestr(1)
587 << "\n---------------------------------------------------------------\n";
588 }
589 else {
590 LOG << "Single Point Positioning of Epoch " << _time.timestr(1)
591 << "\n--------------------------------------------------------------\n";
592 }
593
594 // Outlier Detection Loop
595 // ----------------------
596 if (update_p(epoData) != success) {
597 return failure;
598 }
599
600 // Set Solution Vector
601 // -------------------
602 LOG.setf(ios::fixed);
603 QVectorIterator<t_pppParam*> itPar(_params);
604 while (itPar.hasNext()) {
605 t_pppParam* par = itPar.next();
606 if (par->type == t_pppParam::RECCLK) {
607 LOG << "\n clk = " << setw(10) << setprecision(3) << par->xx
608 << " +- " << setw(6) << setprecision(3)
609 << sqrt(_QQ(par->index,par->index));
610 }
611 else if (par->type == t_pppParam::AMB_L3) {
612 ++par->numEpo;
613 LOG << "\n amb " << par->prn.toAscii().data() << " = "
614 << setw(10) << setprecision(3) << par->xx
615 << " +- " << setw(6) << setprecision(3)
616 << sqrt(_QQ(par->index,par->index))
617 << " nEpo = " << par->numEpo;
618 }
619 else if (par->type == t_pppParam::TROPO) {
620 double aprTrp = delay_saast(M_PI/2.0);
621 LOG << "\n trp = " << par->prn.toAscii().data()
622 << setw(7) << setprecision(3) << aprTrp << " "
623 << setw(6) << setprecision(3) << showpos << par->xx << noshowpos
624 << " +- " << setw(6) << setprecision(3)
625 << sqrt(_QQ(par->index,par->index));
626 }
627 else if (par->type == t_pppParam::GLONASS_OFFSET) {
628 LOG << "\n offGlo = " << setw(10) << setprecision(3) << par->xx
629 << " +- " << setw(6) << setprecision(3)
630 << sqrt(_QQ(par->index,par->index));
631 }
632 else if (par->type == t_pppParam::GALILEO_OFFSET) {
633 LOG << "\n offGal = " << setw(10) << setprecision(3) << par->xx
634 << " +- " << setw(6) << setprecision(3)
635 << sqrt(_QQ(par->index,par->index));
636 }
637 }
638
639 LOG << endl << endl;
640
641 // Compute dilution of precision
642 // -----------------------------
643 cmpDOP(epoData);
644
645 // Final Message (both log file and screen)
646 // ----------------------------------------
647 LOG << OPT->_roverName << " PPP "
648 << epoData->tt.timestr(1) << " " << epoData->sizeAll() << " "
649 << setw(14) << setprecision(3) << x() << " +- "
650 << setw(6) << setprecision(3) << sqrt(_QQ(1,1)) << " "
651 << setw(14) << setprecision(3) << y() << " +- "
652 << setw(6) << setprecision(3) << sqrt(_QQ(2,2)) << " "
653 << setw(14) << setprecision(3) << z() << " +- "
654 << setw(6) << setprecision(3) << sqrt(_QQ(3,3));
655
656 // NEU Output
657 // ----------
658 if (OPT->xyzAprRoverSet()) {
659 double xyz[3];
660 xyz[0] = x() - OPT->_xyzAprRover[0];
661 xyz[1] = y() - OPT->_xyzAprRover[1];
662 xyz[2] = z() - OPT->_xyzAprRover[2];
663
664 double ellRef[3];
665 xyz2ell(OPT->_xyzAprRover.data(), ellRef);
666 xyz2neu(ellRef, xyz, _neu.data());
667
668 LOG << " NEU "
669 << setw(8) << setprecision(3) << _neu[0] << " "
670 << setw(8) << setprecision(3) << _neu[1] << " "
671 << setw(8) << setprecision(3) << _neu[2] << endl << endl;
672 }
673 else {
674 LOG << endl << endl;
675 }
676
677 _lastTimeOK = _time; // remember time of last successful update
678 return success;
679}
680
681// Outlier Detection
682////////////////////////////////////////////////////////////////////////////
683QString t_pppFilter::outlierDetection(int iPhase, const ColumnVector& vv,
684 QMap<QString, t_satData*>& satData) {
685
686 Tracer tracer("t_pppFilter::outlierDetection");
687
688 QString prnGPS;
689 QString prnGlo;
690 double maxResGPS = 0.0;
691 double maxResGlo = 0.0;
692 findMaxRes(vv, satData, prnGPS, prnGlo, maxResGPS, maxResGlo);
693
694 if (iPhase == 1) {
695 if (maxResGlo > 2.98 * OPT->_maxResL1) {
696 LOG << "Outlier Phase " << prnGlo.toAscii().data() << ' ' << maxResGlo << endl;
697 return prnGlo;
698 }
699 else if (maxResGPS > 2.98 * OPT->_maxResL1) {
700 LOG << "Outlier Phase " << prnGPS.toAscii().data() << ' ' << maxResGPS << endl;
701 return prnGPS;
702 }
703 }
704 else if (iPhase == 0 && maxResGPS > 2.98 * OPT->_maxResC1) {
705 LOG << "Outlier Code " << prnGPS.toAscii().data() << ' ' << maxResGPS << endl;
706 return prnGPS;
707 }
708
709 return QString();
710}
711
712// Phase Wind-Up Correction
713///////////////////////////////////////////////////////////////////////////
714double t_pppFilter::windUp(const QString& prn, const ColumnVector& rSat,
715 const ColumnVector& rRec) {
716
717 Tracer tracer("t_pppFilter::windUp");
718
719 double Mjd = _time.mjd() + _time.daysec() / 86400.0;
720
721 // First time - initialize to zero
722 // -------------------------------
723 if (!_windUpTime.contains(prn)) {
724 _windUpSum[prn] = 0.0;
725 }
726
727 // Compute the correction for new time
728 // -----------------------------------
729 if (!_windUpTime.contains(prn) || _windUpTime[prn] != Mjd) {
730 _windUpTime[prn] = Mjd;
731
732 // Unit Vector GPS Satellite --> Receiver
733 // --------------------------------------
734 ColumnVector rho = rRec - rSat;
735 rho /= rho.norm_Frobenius();
736
737 // GPS Satellite unit Vectors sz, sy, sx
738 // -------------------------------------
739 ColumnVector sz = -rSat / rSat.norm_Frobenius();
740
741 ColumnVector xSun = t_astro::Sun(Mjd);
742 xSun /= xSun.norm_Frobenius();
743
744 ColumnVector sy = crossproduct(sz, xSun);
745 ColumnVector sx = crossproduct(sy, sz);
746
747 // Effective Dipole of the GPS Satellite Antenna
748 // ---------------------------------------------
749 ColumnVector dipSat = sx - rho * DotProduct(rho,sx)
750 - crossproduct(rho, sy);
751
752 // Receiver unit Vectors rx, ry
753 // ----------------------------
754 ColumnVector rx(3);
755 ColumnVector ry(3);
756
757 double recEll[3]; xyz2ell(rRec.data(), recEll) ;
758 double neu[3];
759
760 neu[0] = 1.0;
761 neu[1] = 0.0;
762 neu[2] = 0.0;
763 neu2xyz(recEll, neu, rx.data());
764
765 neu[0] = 0.0;
766 neu[1] = -1.0;
767 neu[2] = 0.0;
768 neu2xyz(recEll, neu, ry.data());
769
770 // Effective Dipole of the Receiver Antenna
771 // ----------------------------------------
772 ColumnVector dipRec = rx - rho * DotProduct(rho,rx)
773 + crossproduct(rho, ry);
774
775 // Resulting Effect
776 // ----------------
777 double alpha = DotProduct(dipSat,dipRec) /
778 (dipSat.norm_Frobenius() * dipRec.norm_Frobenius());
779
780 if (alpha > 1.0) alpha = 1.0;
781 if (alpha < -1.0) alpha = -1.0;
782
783 double dphi = acos(alpha) / 2.0 / M_PI; // in cycles
784
785 if ( DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0 ) {
786 dphi = -dphi;
787 }
788
789 _windUpSum[prn] = floor(_windUpSum[prn] - dphi + 0.5) + dphi;
790 }
791
792 return _windUpSum[prn];
793}
794
795//
796///////////////////////////////////////////////////////////////////////////
797void t_pppFilter::cmpEle(t_satData* satData) {
798 Tracer tracer("t_pppFilter::cmpEle");
799 ColumnVector rr = satData->xx - _xcBanc.Rows(1,3);
800 double rho = rr.norm_Frobenius();
801
802 double neu[3];
803 xyz2neu(_ellBanc.data(), rr.data(), neu);
804
805 satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
806 if (neu[2] < 0) {
807 satData->eleSat *= -1.0;
808 }
809 satData->azSat = atan2(neu[1], neu[0]);
810}
811
812//
813///////////////////////////////////////////////////////////////////////////
814void t_pppFilter::addAmb(t_satData* satData) {
815 Tracer tracer("t_pppFilter::addAmb");
816 bool found = false;
817 for (int iPar = 1; iPar <= _params.size(); iPar++) {
818 if (_params[iPar-1]->type == t_pppParam::AMB_L3 &&
819 _params[iPar-1]->prn == satData->prn) {
820 found = true;
821 break;
822 }
823 }
824 if (!found) {
825 t_pppParam* par = new t_pppParam(t_pppParam::AMB_L3,
826 _params.size()+1, satData->prn);
827 _params.push_back(par);
828 par->xx = satData->L3 - cmpValue(satData, true);
829 }
830}
831
832//
833///////////////////////////////////////////////////////////////////////////
834void t_pppFilter::addObs(int iPhase, unsigned& iObs, t_satData* satData,
835 Matrix& AA, ColumnVector& ll, DiagonalMatrix& PP) {
836
837 Tracer tracer("t_pppFilter::addObs");
838
839 const double ELEWGHT = 20.0;
840 double ellWgtCoef = 1.0;
841 double eleD = satData->eleSat * 180.0 / M_PI;
842 if (eleD < ELEWGHT) {
843 ellWgtCoef = 1.5 - 0.5 / (ELEWGHT - 10.0) * (eleD - 10.0);
844 }
845
846 // Remember Observation Index
847 // --------------------------
848 ++iObs;
849 satData->obsIndex = iObs;
850
851 // Phase Observations
852 // ------------------
853 if (iPhase == 1) {
854 ll(iObs) = satData->L3 - cmpValue(satData, true);
855 double sigL3 = 2.98 * OPT->_sigmaL1;
856 if (satData->system() == 'R') {
857 sigL3 *= GLONASS_WEIGHT_FACTOR;
858 }
859 PP(iObs,iObs) = 1.0 / (sigL3 * sigL3) / (ellWgtCoef * ellWgtCoef);
860 for (int iPar = 1; iPar <= _params.size(); iPar++) {
861 if (_params[iPar-1]->type == t_pppParam::AMB_L3 &&
862 _params[iPar-1]->prn == satData->prn) {
863 ll(iObs) -= _params[iPar-1]->xx;
864 }
865 AA(iObs, iPar) = _params[iPar-1]->partial(satData, true);
866 }
867 }
868
869 // Code Observations
870 // -----------------
871 else {
872 double sigP3 = 2.98 * OPT->_sigmaC1;
873 ll(iObs) = satData->P3 - cmpValue(satData, false);
874 PP(iObs,iObs) = 1.0 / (sigP3 * sigP3) / (ellWgtCoef * ellWgtCoef);
875 for (int iPar = 1; iPar <= _params.size(); iPar++) {
876 AA(iObs, iPar) = _params[iPar-1]->partial(satData, false);
877 }
878 }
879}
880
881//
882///////////////////////////////////////////////////////////////////////////
883QByteArray t_pppFilter::printRes(int iPhase, const ColumnVector& vv,
884 const QMap<QString, t_satData*>& satDataMap) {
885
886 Tracer tracer("t_pppFilter::printRes");
887
888 ostringstream str;
889 str.setf(ios::fixed);
890
891 QMapIterator<QString, t_satData*> it(satDataMap);
892 while (it.hasNext()) {
893 it.next();
894 t_satData* satData = it.value();
895 if (satData->obsIndex != 0) {
896 str << _time.timestr(1)
897 << " RES " << satData->prn.toAscii().data()
898 << (iPhase ? " L3 " : " P3 ")
899 << setw(9) << setprecision(4) << vv(satData->obsIndex) << endl;
900 }
901 }
902
903 return QByteArray(str.str().c_str());
904}
905
906//
907///////////////////////////////////////////////////////////////////////////
908void t_pppFilter::findMaxRes(const ColumnVector& vv,
909 const QMap<QString, t_satData*>& satData,
910 QString& prnGPS, QString& prnGlo,
911 double& maxResGPS, double& maxResGlo) {
912
913 Tracer tracer("t_pppFilter::findMaxRes");
914
915 maxResGPS = 0.0;
916 maxResGlo = 0.0;
917
918 QMapIterator<QString, t_satData*> it(satData);
919 while (it.hasNext()) {
920 it.next();
921 t_satData* satData = it.value();
922 if (satData->obsIndex != 0) {
923 QString prn = satData->prn;
924 if (prn[0] == 'R') {
925 if (fabs(vv(satData->obsIndex)) > maxResGlo) {
926 maxResGlo = fabs(vv(satData->obsIndex));
927 prnGlo = prn;
928 }
929 }
930 else {
931 if (fabs(vv(satData->obsIndex)) > maxResGPS) {
932 maxResGPS = fabs(vv(satData->obsIndex));
933 prnGPS = prn;
934 }
935 }
936 }
937 }
938}
939
940// Update Step (private - loop over outliers)
941////////////////////////////////////////////////////////////////////////////
942t_irc t_pppFilter::update_p(t_epoData* epoData) {
943
944 Tracer tracer("t_pppFilter::update_p");
945
946 // Save Variance-Covariance Matrix, and Status Vector
947 // --------------------------------------------------
948 rememberState(epoData);
949
950 QString lastOutlierPrn;
951
952 // Try with all satellites, then with all minus one, etc.
953 // ------------------------------------------------------
954 while (selectSatellites(lastOutlierPrn, epoData->satData) == success) {
955
956 QByteArray strResCode;
957 QByteArray strResPhase;
958
959 // Bancroft Solution
960 // -----------------
961 if (cmpBancroft(epoData) != success) {
962 break;
963 }
964
965 // First update using code observations, then phase observations
966 // -------------------------------------------------------------
967 bool usePhase = OPT->ambLCs('G').size() || OPT->ambLCs('R').size() ||
968 OPT->ambLCs('E').size();
969
970 for (int iPhase = 0; iPhase <= (usePhase ? 1 : 0); iPhase++) {
971
972 // Status Prediction
973 // -----------------
974 predict(iPhase, epoData);
975
976 // Create First-Design Matrix
977 // --------------------------
978 unsigned nPar = _params.size();
979 unsigned nObs = 0;
980 if (iPhase == 0) {
981 nObs = epoData->sizeAll() - epoData->sizeSys('R'); // Glonass code not used
982 }
983 else {
984 nObs = epoData->sizeAll();
985 }
986
987 // Prepare first-design Matrix, vector observed-computed
988 // -----------------------------------------------------
989 Matrix AA(nObs, nPar); // first design matrix
990 ColumnVector ll(nObs); // tems observed-computed
991 DiagonalMatrix PP(nObs); PP = 0.0;
992
993 unsigned iObs = 0;
994 QMapIterator<QString, t_satData*> it(epoData->satData);
995 while (it.hasNext()) {
996 it.next();
997 t_satData* satData = it.value();
998 if (iPhase == 1 || satData->system() != 'R') {
999 QString prn = satData->prn;
1000 addObs(iPhase, iObs, satData, AA, ll, PP);
1001 }
1002 }
1003
1004 // Compute Filter Update
1005 // ---------------------
1006 ColumnVector dx(nPar); dx = 0.0;
1007 kalman(AA, ll, PP, _QQ, dx);
1008 ColumnVector vv = ll - AA * dx;
1009
1010 // Print Residuals
1011 // ---------------
1012 if (iPhase == 0) {
1013 strResCode = printRes(iPhase, vv, epoData->satData);
1014 }
1015 else {
1016 strResPhase = printRes(iPhase, vv, epoData->satData);
1017 }
1018
1019 // Check the residuals
1020 // -------------------
1021 lastOutlierPrn = outlierDetection(iPhase, vv, epoData->satData);
1022
1023 // No Outlier Detected
1024 // -------------------
1025 if (lastOutlierPrn.isEmpty()) {
1026
1027 QVectorIterator<t_pppParam*> itPar(_params);
1028 while (itPar.hasNext()) {
1029 t_pppParam* par = itPar.next();
1030 par->xx += dx(par->index);
1031 }
1032
1033 if (!usePhase || iPhase == 1) {
1034 if (_outlierGPS.size() > 0 || _outlierGlo.size() > 0) {
1035 LOG << "Neglected PRNs: ";
1036 if (!_outlierGPS.isEmpty()) {
1037 LOG << _outlierGPS.last().toAscii().data() << ' ';
1038 }
1039 QStringListIterator itGlo(_outlierGlo);
1040 while (itGlo.hasNext()) {
1041 QString prn = itGlo.next();
1042 LOG << prn.toAscii().data() << ' ';
1043 }
1044 }
1045 LOG << strResCode.data() << strResPhase.data();
1046
1047 return success;
1048 }
1049 }
1050
1051 // Outlier Found
1052 // -------------
1053 else {
1054 restoreState(epoData);
1055 break;
1056 }
1057
1058 } // for iPhase
1059
1060 } // while selectSatellites
1061
1062 restoreState(epoData);
1063 return failure;
1064}
1065
1066// Remeber Original State Vector and Variance-Covariance Matrix
1067////////////////////////////////////////////////////////////////////////////
1068void t_pppFilter::rememberState(t_epoData* epoData) {
1069
1070 _QQ_sav = _QQ;
1071
1072 QVectorIterator<t_pppParam*> itSav(_params_sav);
1073 while (itSav.hasNext()) {
1074 t_pppParam* par = itSav.next();
1075 delete par;
1076 }
1077 _params_sav.clear();
1078
1079 QVectorIterator<t_pppParam*> it(_params);
1080 while (it.hasNext()) {
1081 t_pppParam* par = it.next();
1082 _params_sav.push_back(new t_pppParam(*par));
1083 }
1084
1085 _epoData_sav->deepCopy(epoData);
1086}
1087
1088// Restore Original State Vector and Variance-Covariance Matrix
1089////////////////////////////////////////////////////////////////////////////
1090void t_pppFilter::restoreState(t_epoData* epoData) {
1091
1092 _QQ = _QQ_sav;
1093
1094 QVectorIterator<t_pppParam*> it(_params);
1095 while (it.hasNext()) {
1096 t_pppParam* par = it.next();
1097 delete par;
1098 }
1099 _params.clear();
1100
1101 QVectorIterator<t_pppParam*> itSav(_params_sav);
1102 while (itSav.hasNext()) {
1103 t_pppParam* par = itSav.next();
1104 _params.push_back(new t_pppParam(*par));
1105 }
1106
1107 epoData->deepCopy(_epoData_sav);
1108}
1109
1110//
1111////////////////////////////////////////////////////////////////////////////
1112t_irc t_pppFilter::selectSatellites(const QString& lastOutlierPrn,
1113 QMap<QString, t_satData*>& satData) {
1114
1115 // First Call
1116 // ----------
1117 if (lastOutlierPrn.isEmpty()) {
1118 _outlierGPS.clear();
1119 _outlierGlo.clear();
1120 return success;
1121 }
1122
1123 // Second and next trials
1124 // ----------------------
1125 else {
1126
1127 if (lastOutlierPrn[0] == 'R') {
1128 _outlierGlo << lastOutlierPrn;
1129 }
1130
1131 // Remove all Glonass Outliers
1132 // ---------------------------
1133 QStringListIterator it(_outlierGlo);
1134 while (it.hasNext()) {
1135 QString prn = it.next();
1136 if (satData.contains(prn)) {
1137 delete satData.take(prn);
1138 }
1139 }
1140
1141 if (lastOutlierPrn[0] == 'R') {
1142 _outlierGPS.clear();
1143 return success;
1144 }
1145
1146 // GPS Outlier appeared for the first time - try to delete it
1147 // ----------------------------------------------------------
1148 if (_outlierGPS.indexOf(lastOutlierPrn) == -1) {
1149 _outlierGPS << lastOutlierPrn;
1150 if (satData.contains(lastOutlierPrn)) {
1151 delete satData.take(lastOutlierPrn);
1152 }
1153 return success;
1154 }
1155
1156 }
1157
1158 return failure;
1159}
1160
1161//
1162////////////////////////////////////////////////////////////////////////////
1163double lorentz(const ColumnVector& aa, const ColumnVector& bb) {
1164 return aa(1)*bb(1) + aa(2)*bb(2) + aa(3)*bb(3) - aa(4)*bb(4);
1165}
1166
1167//
1168////////////////////////////////////////////////////////////////////////////
1169void t_pppFilter::bancroft(const Matrix& BBpass, ColumnVector& pos) {
1170
1171 if (pos.Nrows() != 4) {
1172 pos.ReSize(4);
1173 }
1174 pos = 0.0;
1175
1176 for (int iter = 1; iter <= 2; iter++) {
1177 Matrix BB = BBpass;
1178 int mm = BB.Nrows();
1179 for (int ii = 1; ii <= mm; ii++) {
1180 double xx = BB(ii,1);
1181 double yy = BB(ii,2);
1182 double traveltime = 0.072;
1183 if (iter > 1) {
1184 double zz = BB(ii,3);
1185 double rho = sqrt( (xx-pos(1)) * (xx-pos(1)) +
1186 (yy-pos(2)) * (yy-pos(2)) +
1187 (zz-pos(3)) * (zz-pos(3)) );
1188 traveltime = rho / t_CST::c;
1189 }
1190 double angle = traveltime * t_CST::omega;
1191 double cosa = cos(angle);
1192 double sina = sin(angle);
1193 BB(ii,1) = cosa * xx + sina * yy;
1194 BB(ii,2) = -sina * xx + cosa * yy;
1195 }
1196
1197 Matrix BBB;
1198 if (mm > 4) {
1199 SymmetricMatrix hlp; hlp << BB.t() * BB;
1200 BBB = hlp.i() * BB.t();
1201 }
1202 else {
1203 BBB = BB.i();
1204 }
1205 ColumnVector ee(mm); ee = 1.0;
1206 ColumnVector alpha(mm); alpha = 0.0;
1207 for (int ii = 1; ii <= mm; ii++) {
1208 alpha(ii) = lorentz(BB.Row(ii).t(),BB.Row(ii).t())/2.0;
1209 }
1210 ColumnVector BBBe = BBB * ee;
1211 ColumnVector BBBalpha = BBB * alpha;
1212 double aa = lorentz(BBBe, BBBe);
1213 double bb = lorentz(BBBe, BBBalpha)-1;
1214 double cc = lorentz(BBBalpha, BBBalpha);
1215 double root = sqrt(bb*bb-aa*cc);
1216
1217 Matrix hlpPos(4,2);
1218 hlpPos.Column(1) = (-bb-root)/aa * BBBe + BBBalpha;
1219 hlpPos.Column(2) = (-bb+root)/aa * BBBe + BBBalpha;
1220
1221 ColumnVector omc(2);
1222 for (int pp = 1; pp <= 2; pp++) {
1223 hlpPos(4,pp) = -hlpPos(4,pp);
1224 omc(pp) = BB(1,4) -
1225 sqrt( (BB(1,1)-hlpPos(1,pp)) * (BB(1,1)-hlpPos(1,pp)) +
1226 (BB(1,2)-hlpPos(2,pp)) * (BB(1,2)-hlpPos(2,pp)) +
1227 (BB(1,3)-hlpPos(3,pp)) * (BB(1,3)-hlpPos(3,pp)) ) -
1228 hlpPos(4,pp);
1229 }
1230 if ( fabs(omc(1)) > fabs(omc(2)) ) {
1231 pos = hlpPos.Column(2);
1232 }
1233 else {
1234 pos = hlpPos.Column(1);
1235 }
1236 }
1237}
1238
1239//
1240////////////////////////////////////////////////////////////////////////////
1241void t_pppFilter::cmpDOP(t_epoData* epoData) {
1242
1243 Tracer tracer("t_pppFilter::cmpDOP");
1244
1245 _numSat = 0;
1246 _pDop = 0.0;
1247
1248 if (_params.size() < 4) {
1249 return;
1250 }
1251
1252 const unsigned numPar = 4;
1253 Matrix AA(epoData->sizeAll(), numPar);
1254 QMapIterator<QString, t_satData*> it(epoData->satData);
1255 while (it.hasNext()) {
1256 it.next();
1257 t_satData* satData = it.value();
1258 _numSat += 1;
1259 for (unsigned iPar = 0; iPar < numPar; iPar++) {
1260 AA[_numSat-1][iPar] = _params[iPar]->partial(satData, false);
1261 }
1262 }
1263 if (_numSat < 4) {
1264 return;
1265 }
1266 AA = AA.Rows(1, _numSat);
1267 SymmetricMatrix NN; NN << AA.t() * AA;
1268 SymmetricMatrix QQ = NN.i();
1269
1270 _pDop = sqrt(QQ(1,1) + QQ(2,2) + QQ(3,3));
1271}
Note: See TracBrowser for help on using the repository browser.