source: ntrip/trunk/BNC/src/PPP/pppSatObs.cpp@ 9605

Last change on this file since 9605 was 9605, checked in by stuerze, 7 months ago

minor changes

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 24.1 KB
Line 
1/* -------------------------------------------------------------------------
2 * BKG NTRIP Client
3 * -------------------------------------------------------------------------
4 *
5 * Class: t_pppSatObs
6 *
7 * Purpose: Satellite observations
8 *
9 * Author: L. Mervart
10 *
11 * Created: 29-Jul-2014
12 *
13 * Changes:
14 *
15 * -----------------------------------------------------------------------*/
16
17
18#include <iostream>
19#include <iomanip>
20#include <cmath>
21#include <newmatio.h>
22
23#include "pppSatObs.h"
24#include "bncconst.h"
25#include "pppEphPool.h"
26#include "pppStation.h"
27#include "bncutils.h"
28#include "bncantex.h"
29#include "pppObsPool.h"
30#include "pppClient.h"
31
32using namespace BNC_PPP;
33using namespace std;
34
35// Constructor
36////////////////////////////////////////////////////////////////////////////
37t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) {
38 _prn = pppSatObs._prn;
39 _time = pppSatObs._time;
40 _outlier = false;
41 _valid = true;
42 _reference = false;
43 _stecRefSat = 0.0;
44 _stecSat = 0.0;
45 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
46 _obs[ii] = 0;
47 }
48 prepareObs(pppSatObs);
49}
50
51// Destructor
52////////////////////////////////////////////////////////////////////////////
53t_pppSatObs::~t_pppSatObs() {
54 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
55 delete _obs[iFreq];
56 }
57}
58
59//
60////////////////////////////////////////////////////////////////////////////
61void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) {
62
63 _model.reset();
64
65 // Select pseudo-ranges and phase observations
66 // -------------------------------------------
67
68 QString preferredAttribList = "G:12&CWPSLX R:12&CP E:1&CBX E:5&QIX C:26&IQX";
69 if (OPT->_obsModelType == OPT->DCMcodeBias ||
70 OPT->_obsModelType == OPT->DCMphaseBias) {
71 // at the moment only one code or phase bias per system (G,R,E,C)/modulation considered
72 preferredAttribList = "G:12&CW R:12&CP E:1&CX E:5&QX C:26&I";
73 }
74 QStringList priorList = preferredAttribList.split(" ", QString::SkipEmptyParts);
75 string preferredAttrib;
76 char obsSys = pppSatObs._prn.system(); //cout << "SATELLITE: " << pppSatObs._prn.toString() << endl;
77 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
78 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
79 char frqSys = t_frequency::toString(frqType)[0]; //cout << "frqSys: " << frqSys << endl;
80 char frqNum = t_frequency::toString(frqType)[1]; //cout << "frqNum: " << frqNum << endl;
81 if (obsSys != frqSys) {
82 continue;
83 }
84 QStringList hlp;
85 for (int ii = 0; ii < priorList.size(); ii++) {
86 if (priorList[ii].indexOf(":") != -1) {
87 hlp = priorList[ii].split(":", QString::SkipEmptyParts);
88 if (hlp.size() == 2 && hlp[0].length() == 1 && hlp[0][0] == frqSys) {
89 hlp = hlp[1].split("&", QString::SkipEmptyParts);
90 }
91 if (hlp.size() == 2 && hlp[0].indexOf(frqNum) != -1) {
92 preferredAttrib = hlp[1].toStdString(); //cout << "preferredAttrib: " << preferredAttrib << endl;
93 }
94 }
95 for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) {
96 QString obsType = QString("%1").arg(frqNum) + preferredAttrib[iPref]; //cout << "obstype: " << obsType.toStdString().c_str() << endl;
97 if (_obs[iFreq] == 0) {
98 for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) {
99 const t_frqObs* obs = pppSatObs._obs[ii];
100 //cout << "observation2char: " << obs->_rnxType2ch << " vs. " << obsType.toStdString().c_str()<< endl;
101 if (obs->_rnxType2ch == obsType.toStdString() &&
102 obs->_codeValid && obs->_code &&
103 obs->_phaseValid && obs->_phase &&
104 obs->_lockTimeValid && obs->_lockTime > 5.0) {
105 _obs[iFreq] = new t_frqObs(*obs); //cout << "================> newObs: " << obs->_rnxType2ch <<endl;
106 }
107 }
108 }
109 }
110 }
111 }
112
113 // Used frequency types
114 // --------------------
115 _fType1 = t_lc::toFreq(_prn.system(),t_lc::l1);
116 _fType2 = t_lc::toFreq(_prn.system(),t_lc::l2);
117
118 // Check whether all required frequencies available
119 // ------------------------------------------------
120 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
121 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
122 if (tLC == t_lc::GIM) {continue;}
123 if (!isValid(tLC)) {
124 _valid = false;
125 return;
126 }
127 }
128
129 // Find GLONASS Channel Number
130 // ---------------------------
131 if (_prn.system() == 'R') {
132 _channel = PPP_CLIENT->ephPool()->getChannel(_prn);
133 }
134 else {
135 _channel = 0;
136 }
137
138 // Compute Satellite Coordinates at Time of Transmission
139 // -----------------------------------------------------
140 _xcSat.ReSize(6); _xcSat = 0.0;
141 _vvSat.ReSize(3); _vvSat = 0.0;
142 bool totOK = false;
143 ColumnVector satPosOld(6); satPosOld = 0.0;
144 t_lc::type tLC = t_lc::dummy;
145 if (isValid(t_lc::cIF)) {
146 tLC = t_lc::cIF;
147 }
148 if (tLC == t_lc::dummy && isValid(t_lc::c1)) {
149 tLC = t_lc::c1;
150 }
151 if (tLC == t_lc::dummy && isValid(t_lc::c2)) {
152 tLC = t_lc::c2;
153 }
154 if (tLC == t_lc::dummy) {
155 _valid = false;
156 return;
157 }
158 double prange = obsValue(tLC);
159 for (int ii = 1; ii <= 10; ii++) {
160 bncTime ToT = _time - prange / t_CST::c - _xcSat[3];
161 if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) {
162 _valid = false;
163 return;
164 }
165 ColumnVector dx = _xcSat - satPosOld;
166 dx[3] *= t_CST::c;
167 if (dx.NormFrobenius() < 1.e-4) {
168 totOK = true;
169 break;
170 }
171 satPosOld = _xcSat;
172 }
173 if (totOK) {
174 _signalPropagationTime = prange / t_CST::c - _xcSat[3];
175 _model._satClkM = _xcSat[3] * t_CST::c;
176 }
177 else {
178 _valid = false;
179 }
180}
181
182//
183////////////////////////////////////////////////////////////////////////////
184void t_pppSatObs::lcCoeff(t_lc::type tLC,
185 map<t_frequency::type, double>& codeCoeff,
186 map<t_frequency::type, double>& phaseCoeff,
187 map<t_frequency::type, double>& ionoCoeff) const {
188
189 codeCoeff.clear();
190 phaseCoeff.clear();
191 ionoCoeff.clear();
192
193 double f1 = t_CST::freq(_fType1, _channel);
194 double f2 = t_CST::freq(_fType2, _channel);
195 double f1GPS = t_CST::freq(t_frequency::G1, 0);
196
197 switch (tLC) {
198 case t_lc::l1:
199 phaseCoeff[_fType1] = 1.0;
200 ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2);
201 return;
202 case t_lc::l2:
203 phaseCoeff[_fType2] = 1.0;
204 ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2);
205 return;
206 case t_lc::lIF:
207 phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
208 phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
209 return;
210 case t_lc::MW:
211 phaseCoeff[_fType1] = f1 / (f1 - f2);
212 phaseCoeff[_fType2] = -f2 / (f1 - f2);
213 codeCoeff[_fType1] = -f1 / (f1 + f2);
214 codeCoeff[_fType2] = -f2 / (f1 + f2);
215 return;
216 case t_lc::CL:
217 phaseCoeff[_fType1] = 0.5;
218 codeCoeff [_fType1] = 0.5;
219 return;
220 case t_lc::c1:
221 codeCoeff[_fType1] = 1.0;
222 ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2);
223 return;
224 case t_lc::c2:
225 codeCoeff[_fType2] = 1.0;
226 ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2);
227 return;
228 case t_lc::cIF:
229 codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
230 codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
231 return;
232 case t_lc::GIM:
233 case t_lc::dummy:
234 case t_lc::maxLc:
235 return;
236 }
237}
238
239//
240////////////////////////////////////////////////////////////////////////////
241bool t_pppSatObs::isValid(t_lc::type tLC) const {
242 bool valid = true;
243 obsValue(tLC, &valid);
244
245 return valid;
246}
247//
248////////////////////////////////////////////////////////////////////////////
249double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const {
250
251 double retVal = 0.0;
252 if (valid) *valid = true;
253
254 // Pseudo observations
255 if (tLC == t_lc::GIM) {
256 if (_stecRefSat == 0.0 || _stecSat == 0.0) {
257 if (valid) *valid = false;
258 return 0.0;
259 }
260 else {
261 return _stecRefSat;
262 }
263 }
264
265 map<t_frequency::type, double> codeCoeff;
266 map<t_frequency::type, double> phaseCoeff;
267 map<t_frequency::type, double> ionoCoeff;
268 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
269
270 map<t_frequency::type, double>::const_iterator it;
271
272 // Code observations
273 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
274 t_frequency::type tFreq = it->first;
275 if (_obs[tFreq] == 0) {
276 if (valid) *valid = false;
277 return 0.0;
278 }
279 else {
280 retVal += it->second * _obs[tFreq]->_code;
281 }
282 }
283 // Phase observations
284 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
285 t_frequency::type tFreq = it->first;
286 if (_obs[tFreq] == 0) {
287 if (valid) *valid = false;
288 return 0.0;
289 }
290 else {
291 retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel);
292 }
293 }
294 return retVal;
295}
296
297//
298////////////////////////////////////////////////////////////////////////////
299double t_pppSatObs::lambda(t_lc::type tLC) const {
300
301 double f1 = t_CST::freq(_fType1, _channel);
302 double f2 = t_CST::freq(_fType2, _channel);
303
304 if (tLC == t_lc::l1) {
305 return t_CST::c / f1;
306 }
307 else if (tLC == t_lc::l2) {
308 return t_CST::c / f2;
309 }
310 else if (tLC == t_lc::lIF) {
311 return t_CST::c / (f1 + f2);
312 }
313 else if (tLC == t_lc::MW) {
314 return t_CST::c / (f1 - f2);
315 }
316 else if (tLC == t_lc::CL) {
317 return t_CST::c / f1 / 2.0;
318 }
319
320 return 0.0;
321}
322
323//
324////////////////////////////////////////////////////////////////////////////
325double t_pppSatObs::sigma(t_lc::type tLC) const {
326
327 double retVal = 0.0;
328 map<t_frequency::type, double> codeCoeff;
329 map<t_frequency::type, double> phaseCoeff;
330 map<t_frequency::type, double> ionoCoeff;
331 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
332
333 if (tLC == t_lc::GIM) {
334 retVal = OPT->_sigmaGIM * OPT->_sigmaGIM + OPT->_sigmaGIM * OPT->_sigmaGIM;
335 }
336
337 map<t_frequency::type, double>::const_iterator it;
338 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
339 retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1;
340 }
341
342 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
343 retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1;
344 }
345
346 retVal = sqrt(retVal);
347
348 // Elevation-Dependent Weighting
349 // -----------------------------
350 double cEle = 1.0;
351 if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) ||
352 (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) {
353 double eleD = eleSat()*180.0/M_PI;
354 double hlp = fabs(90.0 - eleD);
355 cEle = (1.0 + hlp*hlp*hlp*0.000004);
356 }
357
358 return cEle * retVal;
359}
360
361//
362////////////////////////////////////////////////////////////////////////////
363double t_pppSatObs::maxRes(t_lc::type tLC) const {
364 double retVal = 0.0;
365
366 map<t_frequency::type, double> codeCoeff;
367 map<t_frequency::type, double> phaseCoeff;
368 map<t_frequency::type, double> ionoCoeff;
369 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
370
371 map<t_frequency::type, double>::const_iterator it;
372 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
373 retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1;
374 }
375 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
376 retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1;
377 }
378 if (tLC == t_lc::GIM) {
379 retVal = OPT->_maxResGIM * OPT->_maxResGIM + OPT->_maxResGIM * OPT->_maxResGIM;
380 }
381
382 retVal = sqrt(retVal);
383
384 if ((_prn.system() == 'R' || _prn.system() == 'C') && t_lc::includesCode(tLC)) {
385 if (OPT->_obsModelType == OPT->DCMphaseBias) {
386 retVal *= 5.0;
387 } else {
388 retVal *= 2.0;
389 }
390 }
391
392 return retVal;
393}
394
395
396//
397////////////////////////////////////////////////////////////////////////////
398t_irc t_pppSatObs::cmpModel(const t_pppStation* station) {
399
400 // Reset all model values
401 // ----------------------
402 _model.reset();
403
404 // Topocentric Satellite Position
405 // ------------------------------
406 ColumnVector rSat = _xcSat.Rows(1,3);
407 ColumnVector rRec = station->xyzApr();
408 ColumnVector rhoV = rSat - rRec;
409 _model._rho = rhoV.NormFrobenius();
410
411 ColumnVector vSat = _vvSat;
412
413 ColumnVector neu(3);
414 xyz2neu(station->ellApr().data(), rhoV.data(), neu.data());
415
416 _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho);
417 if (neu[2] < 0) {
418 _model._eleSat *= -1.0;
419 }
420 _model._azSat = atan2(neu[1], neu[0]);
421
422 // Sun unit vector
423 ColumnVector xSun = t_astro::Sun(_time.mjddec());
424 xSun /= xSun.norm_Frobenius();
425
426 // Satellite unit vectors sz, sy, sx
427 ColumnVector sz = -rSat / rSat.norm_Frobenius();
428 ColumnVector sy = crossproduct(sz, xSun);
429 ColumnVector sx = crossproduct(sy, sz);
430
431 sx /= sx.norm_Frobenius();
432 sy /= sy.norm_Frobenius();
433
434 // LOS unit vector satellite --> receiver
435 ColumnVector rho = rRec - rSat;
436 rho /= rho.norm_Frobenius();
437
438 // LOS vector in satellite frame
439 ColumnVector u(3);
440 u(1) = dotproduct(sx, rho);
441 u(2) = dotproduct(sy, rho);
442 u(3) = dotproduct(sz, rho);
443
444 // Azimuth and elevation in satellite antenna frame
445 _model._elTx = atan2(u(3),sqrt(pow(u(2),2)+pow(u(1),2)));
446 _model._azTx = atan2(u(2),u(1));
447
448
449 // Satellite Clocks
450 // ----------------
451 _model._satClkM = _xcSat[3] * t_CST::c;
452
453 // Receiver Clocks
454 // ---------------
455 _model._recClkM = station->dClk() * t_CST::c;
456
457 // Sagnac Effect (correction due to Earth rotation)
458 // ------------------------------------------------
459 ColumnVector Omega(3);
460 Omega[0] = 0.0;
461 Omega[1] = 0.0;
462 Omega[2] = t_CST::omega / t_CST::c;
463 _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec));
464
465 // Antenna Eccentricity
466 // --------------------
467 _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho;
468
469 // Antenna Phase Center Offsets and Variations
470 // -------------------------------------------
471 if (PPP_CLIENT->antex()) {
472 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
473 t_frequency::type frqType = static_cast<t_frequency::type>(ii);
474 string frqStr = t_frequency::toString(frqType);
475 if (frqStr[0] != _prn.system()) {continue;}
476 bool found;
477 QString prn(_prn.toString().c_str());
478 _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType, _model._eleSat, _model._azSat, found);
479 _model._antPCO[ii] += PPP_CLIENT->antex()->satCorr(prn, frqType, _model._elTx, _model._azTx, found);
480 if (OPT->_isAPC && found) {
481 // the PCOs as given in the satellite antenna correction for all frequencies
482 // have to be reduced by the PCO of the reference frequency
483 if (_prn.system() == 'G') {
484 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::G1, _model._elTx, _model._azTx, found);
485 }
486 else if (_prn.system() == 'R') {
487 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::R1, _model._elTx, _model._azTx, found);
488 }
489 else if (_prn.system() == 'E') {
490 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::E1, _model._elTx, _model._azTx, found);
491 }
492 else if (_prn.system() == 'C') {
493 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::C2, _model._elTx, _model._azTx, found);
494 }
495 }
496 }
497 }
498
499 // Tropospheric Delay
500 // ------------------
501 _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat);
502
503 // Code Biases
504 // -----------
505 const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn);
506 if (satCodeBias) {
507 for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) {
508 const t_frqCodeBias& bias = satCodeBias->_bias[ii];
509 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
510 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
511 if (frqStr[0] != _prn.system()) {
512 continue;
513 }
514 const t_frqObs* obs = _obs[iFreq];
515 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
516 _model._codeBias[iFreq] = bias._value;
517 }
518 }
519 }
520 }
521
522 // Phase Biases
523 // -----------
524 const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn);
525 double yaw = 0.0;
526 bool ssr = false;
527 if (satPhaseBias) {
528 double dt = station->epochTime() - satPhaseBias->_time;
529 if (satPhaseBias->_updateInt) {
530 dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]);
531 }
532 yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt;
533 ssr = true;
534 for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) {
535 const t_frqPhaseBias& bias = satPhaseBias->_bias[ii];
536 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
537 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
538 if (frqStr[0] != _prn.system()) {
539 continue;
540 }
541 const t_frqObs* obs = _obs[iFreq];
542 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
543 _model._phaseBias[iFreq] = bias._value;
544 }
545 }
546 }
547 }
548
549 // Phase Wind-Up
550 // -------------
551 _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ;
552
553 // Relativistic effect due to earth gravity
554 // ----------------------------------------
555 double a = rSat.NormFrobenius() + rRec.NormFrobenius();
556 double b = (rSat - rRec).NormFrobenius();
557 double gm = 3.986004418e14; // m3/s2
558 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b));
559
560 // Tidal Correction
561 // ----------------
562 _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho;
563 _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho;
564
565 // Ionospheric Delay
566 // -----------------
567 const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec();
568 bool vTecUsage = true;
569 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
570 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
571 if (tLC == t_lc::cIF || tLC == t_lc::lIF) {
572 vTecUsage = false;
573 }
574 }
575
576 if (vTecUsage && vTec) {
577 double stec = station->stec(vTec, _signalPropagationTime, rSat);
578 double f1GPS = t_CST::freq(t_frequency::G1, 0);
579 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
580 if (OPT->_pseudoObsIono) { // DCMcodeBias, DCMphaseBias
581 // For scaling the slant ionospheric delays the trick is to be consistent with units!
582 // The conversion of TECU into meters requires the frequency of the signal.
583 // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff().
584 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec;
585 }
586 else { // PPP-RTK
587 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
588 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec;
589 }
590 }
591 }
592
593 // Set Model Set Flag
594 // ------------------
595 _model._set = true;
596
597 //printModel();
598
599 return success;
600}
601
602//
603////////////////////////////////////////////////////////////////////////////
604void t_pppSatObs::printModel() const {
605
606 LOG.setf(ios::fixed);
607 LOG << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "")
608
609 << "\n======================= " << endl
610 << "PPP STRATEGY : " << OPT->_obsmodelTypeStr.at((int)OPT->_obsModelType).toLocal8Bit().constData()
611 << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl
612 << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl
613 << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl
614 << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl
615 << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl
616 << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl
617 << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl
618 << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl
619 << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl
620 << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl
621 << "REL : " << setw(12) << setprecision(3) << _model._rel << endl
622 << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl
623 << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl
624 << endl
625 << "FREQUENCY DEPENDENT CORRECTIONS:" << endl
626 << "-------------------------------" << endl;
627 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
628 if (_obs[iFreq]) {
629 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
630 if (_prn.system() == frqStr[0]) {
631 LOG << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl
632 << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl
633 << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl
634 << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl;
635 }
636 }
637 }
638}
639
640//
641////////////////////////////////////////////////////////////////////////////
642void t_pppSatObs::printObsMinusComputed() const {
643// TODO: LOG should be LOG
644 cout.setf(ios::fixed);
645 cout << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
646 << "========================== " << endl;
647 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
648 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
649 cout << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " "
650 << setw(12) << setprecision(3) << obsValue(tLC) << " "
651 << setw(12) << setprecision(3) << cmpValue(tLC) << " "
652 << setw(12) << setprecision(3) << obsValue(tLC) - cmpValue(tLC) << endl;
653 }
654}
655
656
657//
658////////////////////////////////////////////////////////////////////////////
659double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const {
660 return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM;
661}
662
663//
664////////////////////////////////////////////////////////////////////////////
665double t_pppSatObs::cmpValue(t_lc::type tLC) const {
666 double cmpValue;
667
668 if (!isValid(tLC)) {
669 cmpValue = 0.0;
670 }
671 else if (tLC == t_lc::GIM) {
672 cmpValue = _stecSat;
673 }
674 else {
675 // Non-Dispersive Part
676 // -------------------
677 double nonDisp = _model._rho
678 + _model._recClkM - _model._satClkM
679 + _model._sagnac + _model._antEcc + _model._tropo
680 + _model._tideEarth + _model._tideOcean + _model._rel;
681
682 // Add Dispersive Part
683 // -------------------
684 double dispPart = 0.0;
685 map<t_frequency::type, double> codeCoeff;
686 map<t_frequency::type, double> phaseCoeff;
687 map<t_frequency::type, double> ionoCoeff;
688 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
689 map<t_frequency::type, double>::const_iterator it;
690 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
691 t_frequency::type tFreq = it->first;
692 dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]);
693 if (OPT->PPPRTK) {
694 dispPart += it->second * (_model._ionoCodeDelay[tFreq]);
695 }
696 }
697 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
698 t_frequency::type tFreq = it->first;
699 dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] +
700 _model._windUp * t_CST::lambda(tFreq, _channel));
701 if (OPT->PPPRTK) {
702 dispPart += it->second * (- _model._ionoCodeDelay[tFreq]);
703 }
704 }
705 cmpValue = nonDisp + dispPart;
706 }
707
708 return cmpValue;
709}
710
711//
712////////////////////////////////////////////////////////////////////////////
713void t_pppSatObs::setRes(t_lc::type tLC, double res) {
714 _res[tLC] = res;
715}
716
717//
718////////////////////////////////////////////////////////////////////////////
719double t_pppSatObs::getRes(t_lc::type tLC) const {
720 map<t_lc::type, double>::const_iterator it = _res.find(tLC);
721 if (it != _res.end()) {
722 return it->second;
723 }
724 else {
725 return 0.0;
726 }
727}
728
729//
730////////////////////////////////////////////////////////////////////////////
731void t_pppSatObs::setPseudoObsIono(t_frequency::type freq, double stecRefSat) {
732 _stecSat = _model._ionoCodeDelay[freq];
733 _stecRefSat = stecRefSat;
734}
Note: See TracBrowser for help on using the repository browser.