source: ntrip/trunk/BNC/src/PPP/pppSatObs.cpp@ 9598

Last change on this file since 9598 was 9598, checked in by stuerze, 7 months ago

minor changes

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 23.8 KB
Line 
1/* -------------------------------------------------------------------------
2 * BKG NTRIP Client
3 * -------------------------------------------------------------------------
4 *
5 * Class: t_pppSatObs
6 *
7 * Purpose: Satellite observations
8 *
9 * Author: L. Mervart
10 *
11 * Created: 29-Jul-2014
12 *
13 * Changes:
14 *
15 * -----------------------------------------------------------------------*/
16
17
18#include <iostream>
19#include <iomanip>
20#include <cmath>
21#include <newmatio.h>
22
23#include "pppSatObs.h"
24#include "bncconst.h"
25#include "pppEphPool.h"
26#include "pppStation.h"
27#include "bncutils.h"
28#include "bncantex.h"
29#include "pppObsPool.h"
30#include "pppClient.h"
31
32using namespace BNC_PPP;
33using namespace std;
34
35// Constructor
36////////////////////////////////////////////////////////////////////////////
37t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) {
38 _prn = pppSatObs._prn;
39 _time = pppSatObs._time;
40 _outlier = false;
41 _valid = true;
42 _reference = false;
43 _stecRefSat = 0.0;
44 _stecSat = 0.0;
45 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
46 _obs[ii] = 0;
47 }
48 prepareObs(pppSatObs);
49}
50
51// Destructor
52////////////////////////////////////////////////////////////////////////////
53t_pppSatObs::~t_pppSatObs() {
54 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
55 delete _obs[iFreq];
56 }
57}
58
59//
60////////////////////////////////////////////////////////////////////////////
61void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) {
62
63 _model.reset();
64
65 // Select pseudo-ranges and phase observations
66 // -------------------------------------------
67
68 QString preferredAttribList = "G:12&CWPSLX R:12&CP E:1&CBX E:5&QIX C:26&IQX";
69 if (OPT->_obsModelType == OPT->DCMcodeBias ||
70 OPT->_obsModelType == OPT->DCMphaseBias) {
71 // at the moment only one code or phase bias per system (G,R,E,C)/modulation considered
72 preferredAttribList = "G:12&CW R:12&CP E:1&CX E:5&QX C:26&I";
73 }
74 QStringList priorList = preferredAttribList.split(" ", QString::SkipEmptyParts);
75 string preferredAttrib;
76 char obsSys = pppSatObs._prn.system(); //cout << "SATELLITE: " << pppSatObs._prn.toString() << endl;
77 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
78 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
79 char frqSys = t_frequency::toString(frqType)[0]; //cout << "frqSys: " << frqSys << endl;
80 char frqNum = t_frequency::toString(frqType)[1]; //cout << "frqNum: " << frqNum << endl;
81 if (obsSys != frqSys) {
82 continue;
83 }
84 QStringList hlp;
85 for (int ii = 0; ii < priorList.size(); ii++) {
86 if (priorList[ii].indexOf(":") != -1) {
87 hlp = priorList[ii].split(":", QString::SkipEmptyParts);
88 if (hlp.size() == 2 && hlp[0].length() == 1 && hlp[0][0] == frqSys) {
89 hlp = hlp[1].split("&", QString::SkipEmptyParts);
90 }
91 if (hlp.size() == 2 && hlp[0].indexOf(frqNum) != -1) {
92 preferredAttrib = hlp[1].toStdString(); //cout << "preferredAttrib: " << preferredAttrib << endl;
93 }
94 }
95 for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) {
96 QString obsType = QString("%1").arg(frqNum) + preferredAttrib[iPref]; //cout << "obstype: " << obsType.toStdString().c_str() << endl;
97 if (_obs[iFreq] == 0) {
98 for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) {
99 const t_frqObs* obs = pppSatObs._obs[ii];
100 //cout << "observation2char: " << obs->_rnxType2ch << " vs. " << obsType.toStdString().c_str()<< endl;
101 if (obs->_rnxType2ch == obsType.toStdString() &&
102 obs->_codeValid && obs->_code &&
103 obs->_phaseValid && obs->_phase &&
104 obs->_lockTimeValid && obs->_lockTime > 5.0) {
105 _obs[iFreq] = new t_frqObs(*obs); //cout << "================> newObs: " << obs->_rnxType2ch <<endl;
106 }
107 }
108 }
109 }
110 }
111 }
112
113 // Used frequency types
114 // --------------------
115 _fType1 = t_lc::toFreq(_prn.system(),t_lc::l1);
116 _fType2 = t_lc::toFreq(_prn.system(),t_lc::l2);
117
118 // Check whether all required frequencies available
119 // ------------------------------------------------
120 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
121 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
122 if (tLC == t_lc::GIM) {continue;}
123 if (!isValid(tLC)) {
124 _valid = false;
125 return;
126 }
127 }
128
129 // Find GLONASS Channel Number
130 // ---------------------------
131 if (_prn.system() == 'R') {
132 _channel = PPP_CLIENT->ephPool()->getChannel(_prn);
133 }
134 else {
135 _channel = 0;
136 }
137
138 // Compute Satellite Coordinates at Time of Transmission
139 // -----------------------------------------------------
140 _xcSat.ReSize(6); _xcSat = 0.0;
141 _vvSat.ReSize(3); _vvSat = 0.0;
142 bool totOK = false;
143 ColumnVector satPosOld(6); satPosOld = 0.0;
144 t_lc::type tLC = isValid(t_lc::cIF) ? t_lc::cIF : t_lc::c1;
145 double prange = obsValue(tLC);
146 for (int ii = 1; ii <= 10; ii++) {
147 bncTime ToT = _time - prange / t_CST::c - _xcSat[3];
148 if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) {
149 _valid = false;
150 return;
151 }
152 ColumnVector dx = _xcSat - satPosOld;
153 dx[3] *= t_CST::c;
154 if (dx.NormFrobenius() < 1.e-4) {
155 totOK = true;
156 break;
157 }
158 satPosOld = _xcSat;
159 }
160 if (totOK) {
161 _signalPropagationTime = prange / t_CST::c - _xcSat[3];
162 _model._satClkM = _xcSat[3] * t_CST::c;
163 }
164 else {
165 _valid = false;
166 }
167}
168
169//
170////////////////////////////////////////////////////////////////////////////
171void t_pppSatObs::lcCoeff(t_lc::type tLC,
172 map<t_frequency::type, double>& codeCoeff,
173 map<t_frequency::type, double>& phaseCoeff,
174 map<t_frequency::type, double>& ionoCoeff) const {
175
176 codeCoeff.clear();
177 phaseCoeff.clear();
178 ionoCoeff.clear();
179
180 double f1 = t_CST::freq(_fType1, _channel);
181 double f2 = t_CST::freq(_fType2, _channel);
182 double f1GPS = t_CST::freq(t_frequency::G1, 0);
183
184 switch (tLC) {
185 case t_lc::l1:
186 phaseCoeff[_fType1] = 1.0;
187 ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2);
188 return;
189 case t_lc::l2:
190 phaseCoeff[_fType2] = 1.0;
191 ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2);
192 return;
193 case t_lc::lIF:
194 phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
195 phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
196 return;
197 case t_lc::MW:
198 phaseCoeff[_fType1] = f1 / (f1 - f2);
199 phaseCoeff[_fType2] = -f2 / (f1 - f2);
200 codeCoeff[_fType1] = -f1 / (f1 + f2);
201 codeCoeff[_fType2] = -f2 / (f1 + f2);
202 return;
203 case t_lc::CL:
204 phaseCoeff[_fType1] = 0.5;
205 codeCoeff [_fType1] = 0.5;
206 return;
207 case t_lc::c1:
208 codeCoeff[_fType1] = 1.0;
209 ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2);
210 return;
211 case t_lc::c2:
212 codeCoeff[_fType2] = 1.0;
213 ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2);
214 return;
215 case t_lc::cIF:
216 codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
217 codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
218 return;
219 case t_lc::GIM:
220 case t_lc::dummy:
221 case t_lc::maxLc:
222 return;
223 }
224}
225
226//
227////////////////////////////////////////////////////////////////////////////
228bool t_pppSatObs::isValid(t_lc::type tLC) const {
229 bool valid = true;
230 obsValue(tLC, &valid);
231
232 return valid;
233}
234//
235////////////////////////////////////////////////////////////////////////////
236double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const {
237
238 double retVal = 0.0;
239 if (valid) *valid = true;
240
241 // Pseudo observations
242 if (tLC == t_lc::GIM) {
243 if (_stecRefSat == 0.0 || _stecSat == 0.0) {
244 if (valid) *valid = false;
245 return 0.0;
246 }
247 else {
248 return _stecRefSat;
249 }
250 }
251
252 map<t_frequency::type, double> codeCoeff;
253 map<t_frequency::type, double> phaseCoeff;
254 map<t_frequency::type, double> ionoCoeff;
255 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
256
257 map<t_frequency::type, double>::const_iterator it;
258
259 // Code observations
260 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
261 t_frequency::type tFreq = it->first;
262 if (_obs[tFreq] == 0) {
263 if (valid) *valid = false;
264 return 0.0;
265 }
266 else {
267 retVal += it->second * _obs[tFreq]->_code;
268 }
269 }
270 // Phase observations
271 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
272 t_frequency::type tFreq = it->first;
273 if (_obs[tFreq] == 0) {
274 if (valid) *valid = false;
275 return 0.0;
276 }
277 else {
278 retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel);
279 }
280 }
281 return retVal;
282}
283
284//
285////////////////////////////////////////////////////////////////////////////
286double t_pppSatObs::lambda(t_lc::type tLC) const {
287
288 double f1 = t_CST::freq(_fType1, _channel);
289 double f2 = t_CST::freq(_fType2, _channel);
290
291 if (tLC == t_lc::l1) {
292 return t_CST::c / f1;
293 }
294 else if (tLC == t_lc::l2) {
295 return t_CST::c / f2;
296 }
297 else if (tLC == t_lc::lIF) {
298 return t_CST::c / (f1 + f2);
299 }
300 else if (tLC == t_lc::MW) {
301 return t_CST::c / (f1 - f2);
302 }
303 else if (tLC == t_lc::CL) {
304 return t_CST::c / f1 / 2.0;
305 }
306
307 return 0.0;
308}
309
310//
311////////////////////////////////////////////////////////////////////////////
312double t_pppSatObs::sigma(t_lc::type tLC) const {
313
314 double retVal = 0.0;
315 map<t_frequency::type, double> codeCoeff;
316 map<t_frequency::type, double> phaseCoeff;
317 map<t_frequency::type, double> ionoCoeff;
318 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
319
320 if (tLC == t_lc::GIM) {
321 retVal = OPT->_sigmaGIM * OPT->_sigmaGIM + OPT->_sigmaGIM * OPT->_sigmaGIM;
322 }
323
324 map<t_frequency::type, double>::const_iterator it;
325 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
326 retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1;
327 }
328
329 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
330 retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1;
331 }
332
333 retVal = sqrt(retVal);
334
335 // De-Weight GLONASS
336 /* -----------------
337 if (_prn.system() == 'R' && t_lc::includesCode(tLC)) {
338 retVal *= 5.0;
339 }*/
340
341 // Elevation-Dependent Weighting
342 // -----------------------------
343 double cEle = 1.0;
344 if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) ||
345 (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) {
346 double eleD = eleSat()*180.0/M_PI;
347 double hlp = fabs(90.0 - eleD);
348 cEle = (1.0 + hlp*hlp*hlp*0.000004);
349 }
350
351 return cEle * retVal;
352}
353
354//
355////////////////////////////////////////////////////////////////////////////
356double t_pppSatObs::maxRes(t_lc::type tLC) const {
357 double retVal = 0.0;
358
359 map<t_frequency::type, double> codeCoeff;
360 map<t_frequency::type, double> phaseCoeff;
361 map<t_frequency::type, double> ionoCoeff;
362 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
363
364 map<t_frequency::type, double>::const_iterator it;
365 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
366 retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1;
367 }
368 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
369 retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1;
370 }
371 if (tLC == t_lc::GIM) {
372 retVal = OPT->_maxResGIM * OPT->_maxResGIM + OPT->_maxResGIM * OPT->_maxResGIM;
373 }
374
375 retVal = sqrt(retVal);
376
377 return retVal;
378}
379
380
381//
382////////////////////////////////////////////////////////////////////////////
383t_irc t_pppSatObs::cmpModel(const t_pppStation* station) {
384
385 // Reset all model values
386 // ----------------------
387 _model.reset();
388
389 // Topocentric Satellite Position
390 // ------------------------------
391 ColumnVector rSat = _xcSat.Rows(1,3);
392 ColumnVector rRec = station->xyzApr();
393 ColumnVector rhoV = rSat - rRec;
394 _model._rho = rhoV.NormFrobenius();
395
396 ColumnVector vSat = _vvSat;
397
398 ColumnVector neu(3);
399 xyz2neu(station->ellApr().data(), rhoV.data(), neu.data());
400
401 _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho);
402 if (neu[2] < 0) {
403 _model._eleSat *= -1.0;
404 }
405 _model._azSat = atan2(neu[1], neu[0]);
406
407 // Sun unit vector
408 ColumnVector xSun = t_astro::Sun(_time.mjddec());
409 xSun /= xSun.norm_Frobenius();
410
411 // Satellite unit vectors sz, sy, sx
412 ColumnVector sz = -rSat / rSat.norm_Frobenius();
413 ColumnVector sy = crossproduct(sz, xSun);
414 ColumnVector sx = crossproduct(sy, sz);
415
416 sx /= sx.norm_Frobenius();
417 sy /= sy.norm_Frobenius();
418
419 // LOS unit vector satellite --> receiver
420 ColumnVector rho = rRec - rSat;
421 rho /= rho.norm_Frobenius();
422
423 // LOS vector in satellite frame
424 ColumnVector u(3);
425 u(1) = dotproduct(sx, rho);
426 u(2) = dotproduct(sy, rho);
427 u(3) = dotproduct(sz, rho);
428
429 // Azimuth and elevation in satellite antenna frame
430 _model._elTx = atan2(u(3),sqrt(pow(u(2),2)+pow(u(1),2)));
431 _model._azTx = atan2(u(2),u(1));
432
433
434 // Satellite Clocks
435 // ----------------
436 _model._satClkM = _xcSat[3] * t_CST::c;
437
438 // Receiver Clocks
439 // ---------------
440 _model._recClkM = station->dClk() * t_CST::c;
441
442 // Sagnac Effect (correction due to Earth rotation)
443 // ------------------------------------------------
444 ColumnVector Omega(3);
445 Omega[0] = 0.0;
446 Omega[1] = 0.0;
447 Omega[2] = t_CST::omega / t_CST::c;
448 _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec));
449
450 // Antenna Eccentricity
451 // --------------------
452 _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho;
453
454 // Antenna Phase Center Offsets and Variations
455 // -------------------------------------------
456 if (PPP_CLIENT->antex()) {
457 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
458 t_frequency::type frqType = static_cast<t_frequency::type>(ii);
459 string frqStr = t_frequency::toString(frqType);
460 if (frqStr[0] != _prn.system()) {continue;}
461 bool found;
462 QString prn(_prn.toString().c_str());
463 _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType, _model._eleSat, _model._azSat, found);
464 _model._antPCO[ii] += PPP_CLIENT->antex()->satCorr(prn, frqType, _model._elTx, _model._azTx, found);
465 if (OPT->_isAPC && found) {
466 // the PCOs as given in the satellite antenna correction for all frequencies
467 // have to be reduced by the PCO of the reference frequency
468 if (_prn.system() == 'G') {
469 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::G1, _model._elTx, _model._azTx, found);
470 }
471 else if (_prn.system() == 'R') {
472 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::R1, _model._elTx, _model._azTx, found);
473 }
474 else if (_prn.system() == 'E') {
475 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::E1, _model._elTx, _model._azTx, found);
476 }
477 else if (_prn.system() == 'C') {
478 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::C2, _model._elTx, _model._azTx, found);
479 }
480 }
481 }
482 }
483
484 // Tropospheric Delay
485 // ------------------
486 _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat);
487
488 // Code Biases
489 // -----------
490 const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn);
491 if (satCodeBias) {
492 for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) {
493 const t_frqCodeBias& bias = satCodeBias->_bias[ii];
494 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
495 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
496 if (frqStr[0] != _prn.system()) {
497 continue;
498 }
499 const t_frqObs* obs = _obs[iFreq];
500 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
501 _model._codeBias[iFreq] = bias._value;
502 }
503 }
504 }
505 }
506
507 // Phase Biases
508 // -----------
509 const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn);
510 double yaw = 0.0;
511 bool ssr = false;
512 if (satPhaseBias) {
513 double dt = station->epochTime() - satPhaseBias->_time;
514 if (satPhaseBias->_updateInt) {
515 dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]);
516 }
517 yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt;
518 ssr = true;
519 for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) {
520 const t_frqPhaseBias& bias = satPhaseBias->_bias[ii];
521 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
522 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
523 if (frqStr[0] != _prn.system()) {
524 continue;
525 }
526 const t_frqObs* obs = _obs[iFreq];
527 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
528 _model._phaseBias[iFreq] = bias._value;
529 }
530 }
531 }
532 }
533
534 // Phase Wind-Up
535 // -------------
536 _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ;
537
538 // Relativistic effect due to earth gravity
539 // ----------------------------------------
540 double a = rSat.NormFrobenius() + rRec.NormFrobenius();
541 double b = (rSat - rRec).NormFrobenius();
542 double gm = 3.986004418e14; // m3/s2
543 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b));
544
545 // Tidal Correction
546 // ----------------
547 _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho;
548 _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho;
549
550 // Ionospheric Delay
551 // -----------------
552 const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec();
553 bool vTecUsage = true;
554 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
555 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
556 if (tLC == t_lc::cIF || tLC == t_lc::lIF) {
557 vTecUsage = false;
558 }
559 }
560
561 if (vTecUsage && vTec) {
562 double stec = station->stec(vTec, _signalPropagationTime, rSat);
563 double f1GPS = t_CST::freq(t_frequency::G1, 0);
564 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
565 if (OPT->_pseudoObsIono) { // DCMcodeBias, DCMphaseBias
566 // For scaling the slant ionospheric delays the trick is to be consistent with units!
567 // The conversion of TECU into meters requires the frequency of the signal.
568 // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff().
569 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec;
570 }
571 else { // PPP-RTK
572 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
573 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec;
574 }
575 }
576 }
577
578 // Set Model Set Flag
579 // ------------------
580 _model._set = true;
581
582 //printModel();
583
584 return success;
585}
586
587//
588////////////////////////////////////////////////////////////////////////////
589void t_pppSatObs::printModel() const {
590
591 LOG.setf(ios::fixed);
592 LOG << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "")
593
594 << "\n======================= " << endl
595 << "PPP STRATEGY : " << OPT->_obsmodelTypeStr.at((int)OPT->_obsModelType).toLocal8Bit().constData()
596 << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl
597 << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl
598 << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl
599 << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl
600 << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl
601 << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl
602 << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl
603 << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl
604 << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl
605 << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl
606 << "REL : " << setw(12) << setprecision(3) << _model._rel << endl
607 << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl
608 << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl
609 << endl
610 << "FREQUENCY DEPENDENT CORRECTIONS:" << endl
611 << "-------------------------------" << endl;
612 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
613 if (_obs[iFreq]) {
614 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
615 if (_prn.system() == frqStr[0]) {
616 LOG << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl
617 << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl
618 << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl
619 << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl;
620 }
621 }
622 }
623}
624
625//
626////////////////////////////////////////////////////////////////////////////
627void t_pppSatObs::printObsMinusComputed() const {
628// TODO: LOG should be LOG
629 cout.setf(ios::fixed);
630 cout << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
631 << "========================== " << endl;
632 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
633 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
634 cout << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " "
635 << setw(12) << setprecision(3) << obsValue(tLC) << " "
636 << setw(12) << setprecision(3) << cmpValue(tLC) << " "
637 << setw(12) << setprecision(3) << obsValue(tLC) - cmpValue(tLC) << endl;
638 }
639}
640
641
642//
643////////////////////////////////////////////////////////////////////////////
644double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const {
645 return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM;
646}
647
648//
649////////////////////////////////////////////////////////////////////////////
650double t_pppSatObs::cmpValue(t_lc::type tLC) const {
651 double cmpValue;
652
653 if (!isValid(tLC)) {
654 cmpValue = 0.0;
655 }
656 else if (tLC == t_lc::GIM) {
657 cmpValue = _stecSat;
658 }
659 else {
660 // Non-Dispersive Part
661 // -------------------
662 double nonDisp = _model._rho
663 + _model._recClkM - _model._satClkM
664 + _model._sagnac + _model._antEcc + _model._tropo
665 + _model._tideEarth + _model._tideOcean + _model._rel;
666
667 // Add Dispersive Part
668 // -------------------
669 double dispPart = 0.0;
670 map<t_frequency::type, double> codeCoeff;
671 map<t_frequency::type, double> phaseCoeff;
672 map<t_frequency::type, double> ionoCoeff;
673 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
674 map<t_frequency::type, double>::const_iterator it;
675 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
676 t_frequency::type tFreq = it->first;
677 dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]);
678 if (OPT->PPPRTK) {
679 dispPart += it->second * (_model._ionoCodeDelay[tFreq]);
680 }
681 }
682 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
683 t_frequency::type tFreq = it->first;
684 dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] +
685 _model._windUp * t_CST::lambda(tFreq, _channel));
686 if (OPT->PPPRTK) {
687 dispPart += it->second * (- _model._ionoCodeDelay[tFreq]);
688 }
689 }
690 cmpValue = nonDisp + dispPart;
691 }
692
693 return cmpValue;
694}
695
696//
697////////////////////////////////////////////////////////////////////////////
698void t_pppSatObs::setRes(t_lc::type tLC, double res) {
699 _res[tLC] = res;
700}
701
702//
703////////////////////////////////////////////////////////////////////////////
704double t_pppSatObs::getRes(t_lc::type tLC) const {
705 map<t_lc::type, double>::const_iterator it = _res.find(tLC);
706 if (it != _res.end()) {
707 return it->second;
708 }
709 else {
710 return 0.0;
711 }
712}
713
714//
715////////////////////////////////////////////////////////////////////////////
716void t_pppSatObs::setPseudoObsIono(t_frequency::type freq, double stecRefSat) {
717 _stecSat = _model._ionoCodeDelay[freq];
718 _stecRefSat = stecRefSat;
719}
Note: See TracBrowser for help on using the repository browser.