source: ntrip/trunk/BNC/src/PPP/pppSatObs.cpp@ 9582

Last change on this file since 9582 was 9582, checked in by stuerze, 8 months ago

update regarding PPP

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 22.1 KB
Line 
1/* -------------------------------------------------------------------------
2 * BKG NTRIP Client
3 * -------------------------------------------------------------------------
4 *
5 * Class: t_pppSatObs
6 *
7 * Purpose: Satellite observations
8 *
9 * Author: L. Mervart
10 *
11 * Created: 29-Jul-2014
12 *
13 * Changes:
14 *
15 * -----------------------------------------------------------------------*/
16
17
18#include <iostream>
19#include <iomanip>
20#include <cmath>
21#include <newmatio.h>
22
23#include "pppSatObs.h"
24#include "bncconst.h"
25#include "pppEphPool.h"
26#include "pppStation.h"
27#include "bncutils.h"
28#include "bncantex.h"
29#include "pppObsPool.h"
30#include "pppClient.h"
31
32using namespace BNC_PPP;
33using namespace std;
34
35// Constructor
36////////////////////////////////////////////////////////////////////////////
37t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) {
38 _prn = pppSatObs._prn;
39 _time = pppSatObs._time;
40 _outlier = false;
41 _valid = true;
42 _reference = false;
43 _stecRefSat = 0.0;
44 _stecSat = 0.0;
45 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
46 _obs[ii] = 0;
47 }
48 prepareObs(pppSatObs);
49}
50
51// Destructor
52////////////////////////////////////////////////////////////////////////////
53t_pppSatObs::~t_pppSatObs() {
54 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
55 delete _obs[iFreq];
56 }
57}
58
59//
60////////////////////////////////////////////////////////////////////////////
61void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) {
62
63 _model.reset();
64
65 // Select pseudo-ranges and phase observations
66 // -------------------------------------------
67 string preferredAttrib = "G:12&WCPSLX R:12&PC E:1&CBX E:5&QIX C:26&IQX";
68 if (OPT->_obsModelType == OPT->DCMcodeBias ||
69 OPT->_obsModelType == OPT->DCMphaseBias) {
70 // at the moment only one code or phase bias per system (G,R,E,C)/modulation considered,
71 preferredAttrib = "G:12&W R:12&P E:1&CX E:5&QX C:26&I";
72 }
73
74 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
75 string frqNum = t_frequency::toString(t_frequency::type(iFreq)).substr(1);
76 for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) {
77 string obsType = (preferredAttrib[iPref] == '_') ? frqNum : frqNum + preferredAttrib[iPref];
78 if (_obs[iFreq] == 0) {
79 for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) {
80 const t_frqObs* obs = pppSatObs._obs[ii];
81 if (obs->_rnxType2ch == obsType &&
82 obs->_codeValid && obs->_code &&
83 obs->_phaseValid && obs->_phase &&
84 obs->_lockTimeValid && obs->_lockTime > 5.0) {
85 _obs[iFreq] = new t_frqObs(*obs);
86 }
87 }
88 }
89 }
90 }
91
92 // Used frequency types
93 // --------------------
94 _fType1 = t_lc::toFreq(_prn.system(),t_lc::l1);
95 _fType2 = t_lc::toFreq(_prn.system(),t_lc::l2);
96
97 // Check whether all required frequencies available
98 // ------------------------------------------------
99 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
100 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
101 if (tLC == t_lc::GIM) {continue;}
102 if (!isValid(tLC)) {
103 _valid = false;
104 return;
105 }
106 }
107
108 // Find GLONASS Channel Number
109 // ---------------------------
110 if (_prn.system() == 'R') {
111 _channel = PPP_CLIENT->ephPool()->getChannel(_prn);
112 }
113 else {
114 _channel = 0;
115 }
116
117 // Compute Satellite Coordinates at Time of Transmission
118 // -----------------------------------------------------
119 _xcSat.ReSize(6); _xcSat = 0.0;
120 _vvSat.ReSize(3); _vvSat = 0.0;
121 bool totOK = false;
122 ColumnVector satPosOld(6); satPosOld = 0.0;
123 t_lc::type tLC = isValid(t_lc::cIF) ? t_lc::cIF : t_lc::c1;
124 double prange = obsValue(tLC);
125 for (int ii = 1; ii <= 10; ii++) {
126 bncTime ToT = _time - prange / t_CST::c - _xcSat[3];
127 if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) {
128 _valid = false;
129 return;
130 }
131 ColumnVector dx = _xcSat - satPosOld;
132 dx[3] *= t_CST::c;
133 if (dx.NormFrobenius() < 1.e-4) {
134 totOK = true;
135 break;
136 }
137 satPosOld = _xcSat;
138 }
139 if (totOK) {
140 _signalPropagationTime = prange / t_CST::c - _xcSat[3];
141 _model._satClkM = _xcSat[3] * t_CST::c;
142 }
143 else {
144 _valid = false;
145 }
146}
147
148//
149////////////////////////////////////////////////////////////////////////////
150void t_pppSatObs::lcCoeff(t_lc::type tLC,
151 map<t_frequency::type, double>& codeCoeff,
152 map<t_frequency::type, double>& phaseCoeff,
153 map<t_frequency::type, double>& ionoCoeff) const {
154
155 codeCoeff.clear();
156 phaseCoeff.clear();
157 ionoCoeff.clear();
158
159 double f1 = t_CST::freq(_fType1, _channel);
160 double f2 = t_CST::freq(_fType2, _channel);
161 double f1GPS = t_CST::freq(t_frequency::G1, 0);
162
163 switch (tLC) {
164 case t_lc::l1:
165 phaseCoeff[_fType1] = 1.0;
166 ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2);
167 return;
168 case t_lc::l2:
169 phaseCoeff[_fType2] = 1.0;
170 ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2);
171 return;
172 case t_lc::lIF:
173 phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
174 phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
175 return;
176 case t_lc::MW:
177 phaseCoeff[_fType1] = f1 / (f1 - f2);
178 phaseCoeff[_fType2] = -f2 / (f1 - f2);
179 codeCoeff[_fType1] = -f1 / (f1 + f2);
180 codeCoeff[_fType2] = -f2 / (f1 + f2);
181 return;
182 case t_lc::CL:
183 phaseCoeff[_fType1] = 0.5;
184 codeCoeff [_fType1] = 0.5;
185 return;
186 case t_lc::c1:
187 codeCoeff[_fType1] = 1.0;
188 ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2);
189 return;
190 case t_lc::c2:
191 codeCoeff[_fType2] = 1.0;
192 ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2);
193 return;
194 case t_lc::cIF:
195 codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
196 codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
197 return;
198 case t_lc::GIM:
199 case t_lc::dummy:
200 case t_lc::maxLc:
201 return;
202 }
203}
204
205//
206////////////////////////////////////////////////////////////////////////////
207bool t_pppSatObs::isValid(t_lc::type tLC) const {
208 bool valid = true;
209 obsValue(tLC, &valid);
210
211 return valid;
212}
213//
214////////////////////////////////////////////////////////////////////////////
215double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const {
216
217 double retVal = 0.0;
218 if (valid) *valid = true;
219
220 // Pseudo observations
221 if (tLC == t_lc::GIM) {
222 if (_stecRefSat == 0.0 || _stecSat == 0.0) {
223 if (valid) *valid = false;
224 return 0.0;
225 }
226 else {
227 return _stecRefSat;
228 }
229 }
230
231 map<t_frequency::type, double> codeCoeff;
232 map<t_frequency::type, double> phaseCoeff;
233 map<t_frequency::type, double> ionoCoeff;
234 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
235
236 map<t_frequency::type, double>::const_iterator it;
237
238 // Code observations
239 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
240 t_frequency::type tFreq = it->first;
241 if (_obs[tFreq] == 0) {
242 if (valid) *valid = false;
243 return 0.0;
244 }
245 else {
246 retVal += it->second * _obs[tFreq]->_code;
247 }
248 }
249 // Phase observations
250 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
251 t_frequency::type tFreq = it->first;
252 if (_obs[tFreq] == 0) {
253 if (valid) *valid = false;
254 return 0.0;
255 }
256 else {
257 retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel);
258 }
259 }
260 return retVal;
261}
262
263//
264////////////////////////////////////////////////////////////////////////////
265double t_pppSatObs::lambda(t_lc::type tLC) const {
266
267 double f1 = t_CST::freq(_fType1, _channel);
268 double f2 = t_CST::freq(_fType2, _channel);
269
270 if (tLC == t_lc::l1) {
271 return t_CST::c / f1;
272 }
273 else if (tLC == t_lc::l2) {
274 return t_CST::c / f2;
275 }
276 else if (tLC == t_lc::lIF) {
277 return t_CST::c / (f1 + f2);
278 }
279 else if (tLC == t_lc::MW) {
280 return t_CST::c / (f1 - f2);
281 }
282 else if (tLC == t_lc::CL) {
283 return t_CST::c / f1 / 2.0;
284 }
285
286 return 0.0;
287}
288
289//
290////////////////////////////////////////////////////////////////////////////
291double t_pppSatObs::sigma(t_lc::type tLC) const {
292
293 double retVal = 0.0;
294 map<t_frequency::type, double> codeCoeff;
295 map<t_frequency::type, double> phaseCoeff;
296 map<t_frequency::type, double> ionoCoeff;
297 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
298
299 if (tLC == t_lc::GIM) {
300 retVal = OPT->_sigmaGIM * OPT->_sigmaGIM + OPT->_sigmaGIM * OPT->_sigmaGIM;
301 }
302
303 map<t_frequency::type, double>::const_iterator it;
304 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
305 retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1;
306 }
307
308 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
309 retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1;
310 }
311
312 retVal = sqrt(retVal);
313
314 // De-Weight measurements
315 // ----------------------
316 if (_prn.system() == 'R') {
317 retVal *= 50.0;
318 }
319
320 // Elevation-Dependent Weighting
321 // -----------------------------
322 double cEle = 1.0;
323 if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) ||
324 (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) {
325 double eleD = eleSat()*180.0/M_PI;
326 double hlp = fabs(90.0 - eleD);
327 cEle = (1.0 + hlp*hlp*hlp*0.000004);
328 }
329
330 return cEle * retVal;
331}
332
333//
334////////////////////////////////////////////////////////////////////////////
335double t_pppSatObs::maxRes(t_lc::type tLC) const {
336 double retVal = 0.0;
337
338 map<t_frequency::type, double> codeCoeff;
339 map<t_frequency::type, double> phaseCoeff;
340 map<t_frequency::type, double> ionoCoeff;
341 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
342
343 map<t_frequency::type, double>::const_iterator it;
344 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
345 retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1;
346 }
347 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
348 retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1;
349 }
350 if (tLC == t_lc::GIM) {
351 retVal = OPT->_maxResGIM * OPT->_maxResGIM + OPT->_maxResGIM * OPT->_maxResGIM;
352 }
353
354 retVal = sqrt(retVal);
355
356 if (_prn.system() == 'R') {
357 retVal *= 5.0;
358 }
359
360 return retVal;
361}
362
363
364//
365////////////////////////////////////////////////////////////////////////////
366t_irc t_pppSatObs::cmpModel(const t_pppStation* station) {
367
368 // Reset all model values
369 // ----------------------
370 _model.reset();
371
372 // Topocentric Satellite Position
373 // ------------------------------
374 ColumnVector rSat = _xcSat.Rows(1,3);
375 ColumnVector rRec = station->xyzApr();
376 ColumnVector rhoV = rSat - rRec;
377 _model._rho = rhoV.NormFrobenius();
378
379 ColumnVector vSat = _vvSat;
380
381 ColumnVector neu(3);
382 xyz2neu(station->ellApr().data(), rhoV.data(), neu.data());
383
384 _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho);
385 if (neu[2] < 0) {
386 _model._eleSat *= -1.0;
387 }
388 _model._azSat = atan2(neu[1], neu[0]);
389
390 // Sun unit vector
391 ColumnVector xSun = t_astro::Sun(_time.mjddec());
392 xSun /= xSun.norm_Frobenius();
393
394 // Satellite unit vectors sz, sy, sx
395 ColumnVector sz = -rSat / rSat.norm_Frobenius();
396 ColumnVector sy = crossproduct(sz, xSun);
397 ColumnVector sx = crossproduct(sy, sz);
398
399 sx /= sx.norm_Frobenius();
400 sy /= sy.norm_Frobenius();
401
402 // LOS unit vector satellite --> receiver
403 ColumnVector rho = rRec - rSat;
404 rho /= rho.norm_Frobenius();
405
406 // LOS vector in satellite frame
407 ColumnVector u(3);
408 u(1) = dotproduct(sx, rho);
409 u(2) = dotproduct(sy, rho);
410 u(3) = dotproduct(sz, rho);
411
412 // Azimuth and elevation in satellite antenna frame
413 _model._elTx = atan2(u(3),sqrt(pow(u(2),2)+pow(u(1),2)));
414 _model._azTx = atan2(u(2),u(1));
415
416
417 // Satellite Clocks
418 // ----------------
419 _model._satClkM = _xcSat[3] * t_CST::c;
420
421 // Receiver Clocks
422 // ---------------
423 _model._recClkM = station->dClk() * t_CST::c;
424
425 // Sagnac Effect (correction due to Earth rotation)
426 // ------------------------------------------------
427 ColumnVector Omega(3);
428 Omega[0] = 0.0;
429 Omega[1] = 0.0;
430 Omega[2] = t_CST::omega / t_CST::c;
431 _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec));
432
433 // Antenna Eccentricity
434 // --------------------
435 _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho;
436
437 // Antenna Phase Center Offsets and Variations
438 // -------------------------------------------
439 if (PPP_CLIENT->antex()) {
440 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
441 t_frequency::type frqType = static_cast<t_frequency::type>(ii);
442 bool found;
443 QString prn(_prn.toString().c_str());
444 _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType, _model._eleSat, _model._azSat, found);
445 _model._antPCO[ii] += PPP_CLIENT->antex()->satCorr(prn, frqType, _model._elTx, _model._azTx, found);
446 if (OPT->_isAPC && found) {
447 // the PCOs as given in the satellite antenna correction for all frequencies
448 // have to be reduced by the PCO of the reference frequency
449 if (_prn.system() == 'G') {
450 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::G1, _model._elTx, _model._azTx, found);
451 }
452 else if (_prn.system() == 'R') {
453 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::R1, _model._elTx, _model._azTx, found);
454 }
455 else if (_prn.system() == 'E') {
456 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::E1, _model._elTx, _model._azTx, found);
457 }
458 else if (_prn.system() == 'C') {
459 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::C2, _model._elTx, _model._azTx, found);
460 }
461 }
462 }
463 }
464
465 // Tropospheric Delay
466 // ------------------
467 _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat);
468
469 // Code Biases
470 // -----------
471 const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn);
472 if (satCodeBias) {
473 for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) {
474 const t_frqCodeBias& bias = satCodeBias->_bias[ii];
475 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
476 const t_frqObs* obs = _obs[iFreq];
477 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
478 _model._codeBias[iFreq] = bias._value;
479 }
480 }
481 }
482 }
483
484 // Phase Biases
485 // -----------
486 const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn);
487 double yaw = 0.0;
488 bool ssr = false;
489 if (satPhaseBias) {
490 double dt = station->epochTime() - satPhaseBias->_time;
491 if (satPhaseBias->_updateInt) {
492 dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]);
493 }
494 yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt;
495 ssr = true;
496 for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) {
497 const t_frqPhaseBias& bias = satPhaseBias->_bias[ii];
498 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
499 const t_frqObs* obs = _obs[iFreq];
500 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
501 _model._phaseBias[iFreq] = bias._value;
502 }
503 }
504 }
505 }
506
507 // Phase Wind-Up
508 // -------------
509 _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ;
510
511 // Relativistic effect due to earth gravity
512 // ----------------------------------------
513 double a = rSat.NormFrobenius() + rRec.NormFrobenius();
514 double b = (rSat - rRec).NormFrobenius();
515 double gm = 3.986004418e14; // m3/s2
516 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b));
517
518 // Tidal Correction
519 // ----------------
520 _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho;
521 _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho;
522
523 // Ionospheric Delay
524 // -----------------
525 const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec();
526 bool vTecUsage = true;
527 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
528 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
529 if (tLC == t_lc::cIF || tLC == t_lc::lIF) {
530 vTecUsage = false;
531 }
532 }
533
534 if (vTecUsage && vTec) {
535 double stec = station->stec(vTec, _signalPropagationTime, rSat);
536 double f1GPS = t_CST::freq(t_frequency::G1, 0);
537 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
538 if (OPT->_pseudoObsIono) { // DCMcodeBias, DCMphaseBias
539 // For scaling the slant ionospheric delays the trick is to be consistent with units!
540 // The conversion of TECU into meters requires the frequency of the signal.
541 // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff().
542 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec;
543 }
544 else { // PPP-RTK
545 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
546 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec;
547 }
548 }
549 }
550
551 // Set Model Set Flag
552 // ------------------
553 _model._set = true;
554
555 //printModel();
556
557 return success;
558}
559
560//
561////////////////////////////////////////////////////////////////////////////
562void t_pppSatObs::printModel() const {
563
564 LOG.setf(ios::fixed);
565 LOG << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "")
566
567 << "======================= " << endl
568 << "PPP STRATEGY : " << OPT->_obsmodelTypeStr.at((int)OPT->_obsModelType).toLocal8Bit().constData()
569 << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl
570 << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl
571 << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl
572 << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl
573 << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl
574 << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl
575 << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl
576 << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl
577 << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl
578 << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl
579 << "REL : " << setw(12) << setprecision(3) << _model._rel << endl
580 << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl
581 << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl
582 << endl
583 << "FREQUENCY DEPENDENT CORRECTIONS:" << endl
584 << "-------------------------------" << endl;
585 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
586 if (_obs[iFreq]) {
587 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
588 if (_prn.system() == frqStr[0]) {
589 LOG << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl
590 << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << endl
591 << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << endl
592 << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl;
593 }
594 }
595 }
596}
597
598//
599////////////////////////////////////////////////////////////////////////////
600void t_pppSatObs::printObsMinusComputed() const {
601// TODO: cout should be LOG
602 cout.setf(ios::fixed);
603 cout << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
604 << "========================== " << endl;
605 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
606 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
607 cout << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " "
608 << setw(12) << setprecision(3) << obsValue(tLC) << " "
609 << setw(12) << setprecision(3) << cmpValue(tLC) << " "
610 << setw(12) << setprecision(3) << obsValue(tLC) - cmpValue(tLC) << endl;
611 }
612}
613
614
615//
616////////////////////////////////////////////////////////////////////////////
617double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const {
618 return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM;
619}
620
621//
622////////////////////////////////////////////////////////////////////////////
623double t_pppSatObs::cmpValue(t_lc::type tLC) const {
624 double cmpValue;
625
626 if (!isValid(tLC)) {
627 cmpValue = 0.0;
628 }
629 else if (tLC == t_lc::GIM) {
630 cmpValue = _stecSat;
631 }
632 else {
633 // Non-Dispersive Part
634 // -------------------
635 double nonDisp = _model._rho
636 + _model._recClkM - _model._satClkM
637 + _model._sagnac + _model._antEcc + _model._tropo
638 + _model._tideEarth + _model._tideOcean + _model._rel;
639
640 // Add Dispersive Part
641 // -------------------
642 double dispPart = 0.0;
643 map<t_frequency::type, double> codeCoeff;
644 map<t_frequency::type, double> phaseCoeff;
645 map<t_frequency::type, double> ionoCoeff;
646 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
647 map<t_frequency::type, double>::const_iterator it;
648 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
649 t_frequency::type tFreq = it->first;
650 dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]);
651 if (OPT->PPPRTK) {
652 dispPart += it->second * (_model._ionoCodeDelay[tFreq]);
653 }
654 }
655 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
656 t_frequency::type tFreq = it->first;
657 dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] +
658 _model._windUp * t_CST::lambda(tFreq, _channel));
659 if (OPT->PPPRTK) {
660 dispPart += it->second * (- _model._ionoCodeDelay[tFreq]);
661 }
662 }
663 cmpValue = nonDisp + dispPart;
664 }
665
666 return cmpValue;
667}
668
669//
670////////////////////////////////////////////////////////////////////////////
671void t_pppSatObs::setRes(t_lc::type tLC, double res) {
672 _res[tLC] = res;
673}
674
675//
676////////////////////////////////////////////////////////////////////////////
677double t_pppSatObs::getRes(t_lc::type tLC) const {
678 map<t_lc::type, double>::const_iterator it = _res.find(tLC);
679 if (it != _res.end()) {
680 return it->second;
681 }
682 else {
683 return 0.0;
684 }
685}
686
687//
688////////////////////////////////////////////////////////////////////////////
689void t_pppSatObs::setPseudoObsIono(t_frequency::type freq, double stecRefSat) {
690 _stecSat = _model._ionoCodeDelay[freq];
691 _stecRefSat = stecRefSat;
692}
Note: See TracBrowser for help on using the repository browser.