source: ntrip/trunk/BNC/src/PPP/pppSatObs.cpp@ 8905

Last change on this file since 8905 was 8905, checked in by stuerze, 2 years ago

some developments regarding PPP, not completed!

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 20.5 KB
Line 
1/* -------------------------------------------------------------------------
2 * BKG NTRIP Client
3 * -------------------------------------------------------------------------
4 *
5 * Class: t_pppSatObs
6 *
7 * Purpose: Satellite observations
8 *
9 * Author: L. Mervart
10 *
11 * Created: 29-Jul-2014
12 *
13 * Changes:
14 *
15 * -----------------------------------------------------------------------*/
16
17
18#include <iostream>
19#include <cmath>
20#include <newmatio.h>
21
22#include "pppSatObs.h"
23#include "bncconst.h"
24#include "pppEphPool.h"
25#include "pppStation.h"
26#include "bncutils.h"
27#include "bncantex.h"
28#include "pppObsPool.h"
29#include "pppClient.h"
30
31using namespace BNC_PPP;
32using namespace std;
33
34// Constructor
35////////////////////////////////////////////////////////////////////////////
36t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) {
37 _prn = pppSatObs._prn;
38 _time = pppSatObs._time;
39 _outlier = false;
40 _valid = true;
41 _reference = false;
42 _stecRefSat = 0.0;
43 _stecSat = 0.0;
44 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
45 _obs[ii] = 0;
46 }
47 prepareObs(pppSatObs);
48}
49
50// Destructor
51////////////////////////////////////////////////////////////////////////////
52t_pppSatObs::~t_pppSatObs() {
53 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
54 delete _obs[iFreq];
55 }
56}
57
58//
59////////////////////////////////////////////////////////////////////////////
60void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) {
61
62 _model.reset();
63
64 // Select pseudoranges and phase observations
65 // ------------------------------------------
66 const string preferredAttrib = "G:12&PWCSLXYN G:5&IQX R:12&PC R:3&IQX E:16&BCX E:578&IQX J:1&SLXCZ J:26&SLX J:5&IQX C:IQX I:ABCX S:1&C S:5&IQX";
67
68 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
69 string frqNum = t_frequency::toString(t_frequency::type(iFreq)).substr(1);
70 for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) {
71 string obsType = (preferredAttrib[iPref] == '_') ? frqNum : frqNum + preferredAttrib[iPref];
72 if (_obs[iFreq] == 0) {
73 for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) {
74 const t_frqObs* obs = pppSatObs._obs[ii];
75 if (obs->_rnxType2ch == obsType &&
76 obs->_codeValid && obs->_code &&
77 obs->_phaseValid && obs->_phase) {
78 _obs[iFreq] = new t_frqObs(*obs);
79 }
80 }
81 }
82 }
83 }
84
85 // Used frequency types
86 // --------------------
87 _fType1 = t_lc::toFreq(_prn.system(),t_lc::l1);
88 _fType2 = t_lc::toFreq(_prn.system(),t_lc::l2);
89
90 // Check whether all required frequencies available
91 // ------------------------------------------------
92 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
93 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
94 if (tLC == t_lc::GIM) {continue;}
95 if (!isValid(tLC)) {
96 _valid = false;
97 return;
98 }
99 }
100
101 // Find Glonass Channel Number
102 // ---------------------------
103 if (_prn.system() == 'R') {
104 _channel = PPP_CLIENT->ephPool()->getChannel(_prn);
105 }
106 else {
107 _channel = 0;
108 }
109
110 // Compute Satellite Coordinates at Time of Transmission
111 // -----------------------------------------------------
112 _xcSat.ReSize(6); _xcSat = 0.0;
113 _vvSat.ReSize(3); _vvSat = 0.0;
114 bool totOK = false;
115 ColumnVector satPosOld(6); satPosOld = 0.0;
116 t_lc::type tLC = isValid(t_lc::cIF) ? t_lc::cIF : t_lc::c1;
117 double prange = obsValue(tLC);
118 for (int ii = 1; ii <= 10; ii++) {
119 bncTime ToT = _time - prange / t_CST::c - _xcSat[3];
120 if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) {
121 _valid = false;
122 return;
123 }
124 ColumnVector dx = _xcSat - satPosOld;
125 dx[3] *= t_CST::c;
126 if (dx.NormFrobenius() < 1.e-4) {
127 totOK = true;
128 break;
129 }
130 satPosOld = _xcSat;
131 }
132 if (totOK) {
133 _signalPropagationTime = prange / t_CST::c - _xcSat[3];
134 _model._satClkM = _xcSat[3] * t_CST::c;
135 }
136 else {
137 _valid = false;
138 }
139}
140
141//
142////////////////////////////////////////////////////////////////////////////
143void t_pppSatObs::lcCoeff(t_lc::type tLC,
144 map<t_frequency::type, double>& codeCoeff,
145 map<t_frequency::type, double>& phaseCoeff,
146 map<t_frequency::type, double>& ionoCoeff) const {
147
148 codeCoeff.clear();
149 phaseCoeff.clear();
150 ionoCoeff.clear();
151
152 double f1 = t_CST::freq(_fType1, _channel);
153 double f2 = t_CST::freq(_fType2, _channel);
154 double f1GPS = t_CST::freq(t_frequency::G1, 0);
155
156 switch (tLC) {
157 case t_lc::l1:
158 phaseCoeff[_fType1] = 1.0;
159 ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2);
160 return;
161 case t_lc::l2:
162 phaseCoeff[_fType2] = 1.0;
163 ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2);
164 return;
165 case t_lc::lIF:
166 phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
167 phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
168 return;
169 case t_lc::MW:
170 phaseCoeff[_fType1] = f1 / (f1 - f2);
171 phaseCoeff[_fType2] = -f2 / (f1 - f2);
172 codeCoeff[_fType1] = -f1 / (f1 + f2);
173 codeCoeff[_fType2] = -f2 / (f1 + f2);
174 return;
175 case t_lc::CL:
176 phaseCoeff[_fType1] = 0.5;
177 codeCoeff [_fType1] = 0.5;
178 return;
179 case t_lc::c1:
180 codeCoeff[_fType1] = 1.0;
181 ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2);
182 return;
183 case t_lc::c2:
184 codeCoeff[_fType2] = 1.0;
185 ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2);
186 return;
187 case t_lc::cIF:
188 codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
189 codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
190 return;
191 case t_lc::GIM:
192 case t_lc::dummy:
193 case t_lc::maxLc:
194 return;
195 }
196}
197
198//
199////////////////////////////////////////////////////////////////////////////
200bool t_pppSatObs::isValid(t_lc::type tLC) const {
201 bool valid = true;
202 obsValue(tLC, &valid);
203 //qDebug() << "tLC: " << tLC << " valid: " << valid;
204 return valid;
205}
206//
207////////////////////////////////////////////////////////////////////////////
208double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const {
209
210 double retVal = 0.0;
211 if (valid) *valid = true;
212
213 // Pseudo observations
214 if (tLC == t_lc::GIM) {
215 if (_stecRefSat == 0.0 || _stecSat == 0.0) {
216 if (valid) *valid = false;
217 return 0.0;
218 }
219 else {
220 return _stecRefSat - _stecSat;
221 }
222 }
223
224 map<t_frequency::type, double> codeCoeff;
225 map<t_frequency::type, double> phaseCoeff;
226 map<t_frequency::type, double> ionoCoeff;
227 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
228
229 map<t_frequency::type, double>::const_iterator it;
230
231 // Code observations
232 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
233 t_frequency::type tFreq = it->first;
234 if (_obs[tFreq] == 0) {
235 if (valid) *valid = false;
236 return 0.0;
237 }
238 else {
239 retVal += it->second * _obs[tFreq]->_code;
240 }
241 }
242 // Phase observations
243 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
244 t_frequency::type tFreq = it->first;
245 if (_obs[tFreq] == 0) {
246 if (valid) *valid = false;
247 return 0.0;
248 }
249 else {
250 retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel);
251 }
252 }
253 return retVal;
254}
255
256//
257////////////////////////////////////////////////////////////////////////////
258double t_pppSatObs::lambda(t_lc::type tLC) const {
259
260 double f1 = t_CST::freq(_fType1, _channel);
261 double f2 = t_CST::freq(_fType2, _channel);
262
263 if (tLC == t_lc::l1) {
264 return t_CST::c / f1;
265 }
266 else if (tLC == t_lc::l2) {
267 return t_CST::c / f2;
268 }
269 else if (tLC == t_lc::lIF) {
270 return t_CST::c / (f1 + f2);
271 }
272 else if (tLC == t_lc::MW) {
273 return t_CST::c / (f1 - f2);
274 }
275 else if (tLC == t_lc::CL) {
276 return t_CST::c / f1 / 2.0;
277 }
278
279 return 0.0;
280}
281
282//
283////////////////////////////////////////////////////////////////////////////
284double t_pppSatObs::sigma(t_lc::type tLC) const {
285
286 double retVal = 0.0;
287 map<t_frequency::type, double> codeCoeff;
288 map<t_frequency::type, double> phaseCoeff;
289 map<t_frequency::type, double> ionoCoeff;
290 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
291
292 if (tLC == t_lc::GIM) {
293 retVal = OPT->_sigmaGIMdiff * OPT->_sigmaGIMdiff;
294 }
295
296 map<t_frequency::type, double>::const_iterator it;
297 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {//qDebug() << "codeCoeff : " << t_frequency::toString(it->first).c_str() << ": " << it->second;
298 retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1;
299 }
300
301 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {//qDebug() << "phaseCoeff: " << t_frequency::toString(it->first).c_str() << ": " << it->second;
302 retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1;
303 }
304
305 retVal = sqrt(retVal);
306
307 // De-Weight GLONASS
308 // -----------------
309 if (_prn.system() == 'R') {
310 retVal *= 5.0;
311 }
312
313 // Elevation-Dependent Weighting
314 // -----------------------------
315 double cEle = 1.0;
316 if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) ||
317 (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) {
318 double eleD = eleSat()*180.0/M_PI;
319 double hlp = fabs(90.0 - eleD);
320 cEle = (1.0 + hlp*hlp*hlp*0.000004);
321 }
322
323 return cEle * retVal;
324}
325
326//
327////////////////////////////////////////////////////////////////////////////
328double t_pppSatObs::maxRes(t_lc::type tLC) const {//qDebug() << "t_pppSatObs::maxRes(t_lc::type tLC)";
329 double retVal = 0.0;
330
331 map<t_frequency::type, double> codeCoeff;
332 map<t_frequency::type, double> phaseCoeff;
333 map<t_frequency::type, double> ionoCoeff;
334 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
335
336 map<t_frequency::type, double>::const_iterator it;
337 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {//qDebug() << "codeCoeff: " << it->first << ": " << it->second;
338 retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1;
339 }
340 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {//qDebug() << "phaseCoeff: " << it->first << ": " << it->second;
341 retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1;
342 }
343 if (tLC == t_lc::GIM) {
344 retVal = 3 * (OPT->_sigmaGIMdiff * OPT->_sigmaGIMdiff);
345 }
346 return sqrt(retVal);
347}
348
349
350//
351////////////////////////////////////////////////////////////////////////////
352t_irc t_pppSatObs::cmpModel(const t_pppStation* station) {
353
354 // Reset all model values
355 // ----------------------
356 _model.reset();
357
358 // Topocentric Satellite Position
359 // ------------------------------
360 ColumnVector rSat = _xcSat.Rows(1,3);
361 ColumnVector rRec = station->xyzApr();
362 ColumnVector rhoV = rSat - rRec;
363 _model._rho = rhoV.NormFrobenius();
364
365 ColumnVector vSat = _vvSat;
366
367 ColumnVector neu(3);
368 xyz2neu(station->ellApr().data(), rhoV.data(), neu.data());
369
370 _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho);
371 if (neu[2] < 0) {
372 _model._eleSat *= -1.0;
373 }
374 _model._azSat = atan2(neu[1], neu[0]);
375
376 // Satellite Clocks
377 // ----------------
378 _model._satClkM = _xcSat[3] * t_CST::c;
379
380 // Receiver Clocks
381 // ---------------
382 _model._recClkM = station->dClk() * t_CST::c;
383
384 // Sagnac Effect (correction due to Earth rotation)
385 // ------------------------------------------------
386 ColumnVector Omega(3);
387 Omega[0] = 0.0;
388 Omega[1] = 0.0;
389 Omega[2] = t_CST::omega / t_CST::c;
390 _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec));
391
392 // Antenna Eccentricity
393 // --------------------
394 _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho;
395
396 // Antenna Phase Center Offsets and Variations
397 // -------------------------------------------
398 if (PPP_CLIENT->antex()) {
399 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
400 t_frequency::type frqType = static_cast<t_frequency::type>(ii);
401 bool found;
402 _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType,
403 _model._eleSat, _model._azSat, found);
404 }
405 }
406
407 // Tropospheric Delay
408 // ------------------
409 _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat);
410
411 // Code Biases
412 // -----------
413 const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn);
414 if (satCodeBias) {
415 for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) {
416 const t_frqCodeBias& bias = satCodeBias->_bias[ii];
417 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
418 const t_frqObs* obs = _obs[iFreq];
419 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
420 _model._codeBias[iFreq] = bias._value;
421 }
422 }
423 }
424 }
425
426 // Phase Biases
427 // -----------
428 const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn);
429 double yaw = 0.0;
430 bool ssr = false;
431 if (satPhaseBias) {
432 double dt = station->epochTime() - satPhaseBias->_time;
433 if (satPhaseBias->_updateInt) {
434 dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]);
435 }
436 yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt;
437 ssr = true;
438 for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) {
439 const t_frqPhaseBias& bias = satPhaseBias->_bias[ii];
440 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
441 const t_frqObs* obs = _obs[iFreq];
442 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
443 _model._phaseBias[iFreq] = bias._value;
444 }
445 }
446 }
447 }
448
449 // Phase Wind-Up
450 // -------------
451 _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ;
452
453 // Relativistic effect due to earth gravity
454 // ----------------------------------------
455 double a = rSat.NormFrobenius() + rRec.NormFrobenius();
456 double b = (rSat - rRec).NormFrobenius();
457 double gm = 3.986004418e14; // m3/s2
458 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b));
459
460 // Tidal Correction
461 // ----------------
462 _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho;
463 _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho;
464
465 // Ionospheric Delay
466 // -----------------
467 const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec();
468 bool vTecUsage = true;
469 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
470 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
471 if (tLC == t_lc::cIF || tLC == t_lc::lIF) {
472 vTecUsage = false;
473 }
474 }
475
476 if (vTecUsage && vTec) {
477 double stec = station->stec(vTec, _signalPropagationTime, rSat);
478 double f1GPS = t_CST::freq(t_frequency::G1, 0);
479 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
480 if (OPT->_pseudoObsIono) { // DCMcodeBias, DCMphaseBias
481 // For scaling the slant ionospheric delays the trick is to be consistent with units!
482 // The conversion of TECU into meters requires the frequency of the signal.
483 // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff().
484 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec;
485 }
486 else { // PPP-RTK
487 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
488 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec;
489 }
490 }
491 }
492
493 // Set Model Set Flag
494 // ------------------
495 _model._set = true;
496
497 printModel();
498
499 return success;
500}
501
502//
503////////////////////////////////////////////////////////////////////////////
504void t_pppSatObs::printModel() const {
505// TODO: cout should be LOG
506 cout.setf(ios::fixed);
507 cout << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
508 << "======================= " << endl
509 << "PPP STRATEGY : " << OPT->_obsmodelTypeStr.at((int)OPT->_obsModelType).toLocal8Bit().constData()
510 << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl
511 << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl
512 << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl
513 << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl
514 << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl
515 << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl
516 << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl
517 << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl
518 << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl
519 << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl
520 << "REL : " << setw(12) << setprecision(3) << _model._rel << endl
521 << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl
522 << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl
523 << endl
524 << "FREQUENCY DEPENDENT CORRECTIONS:" << endl
525 << "-------------------------------" << endl;
526 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
527 if (_obs[iFreq]) {
528 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
529 if (_prn.system() == frqStr[0]) {
530 cout << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl
531 << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << endl
532 << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << endl
533 << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl;
534 }
535 }
536 }
537}
538
539//
540////////////////////////////////////////////////////////////////////////////
541void t_pppSatObs::printObsMinusComputed() const {
542// TODO: cout should be LOG
543 cout.setf(ios::fixed);
544 cout << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
545 << "========================== " << endl;
546 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
547 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
548 cout << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " "
549 << setw(12) << setprecision(3) << obsValue(tLC) << " "
550 << setw(12) << setprecision(3) << cmpValue(tLC) << " "
551 << setw(12) << setprecision(3) << obsValue(tLC) - cmpValue(tLC) << endl;
552 }
553}
554
555
556//
557////////////////////////////////////////////////////////////////////////////
558double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const {
559 return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM;
560}
561
562//
563////////////////////////////////////////////////////////////////////////////
564double t_pppSatObs::cmpValue(t_lc::type tLC) const {
565 double cmpValue;
566
567 if (!isValid(tLC)) {
568 cmpValue = 0.0;
569 }
570 else if (tLC == t_lc::GIM) {
571 cmpValue = 0.0;
572 }
573 else {
574 // Non-Dispersive Part
575 // -------------------
576 double nonDisp = _model._rho
577 + _model._recClkM - _model._satClkM
578 + _model._sagnac + _model._antEcc + _model._tropo
579 + _model._tideEarth + _model._tideOcean + _model._rel;
580
581 // Add Dispersive Part
582 // -------------------
583 double dispPart = 0.0;
584 map<t_frequency::type, double> codeCoeff;
585 map<t_frequency::type, double> phaseCoeff;
586 map<t_frequency::type, double> ionoCoeff;
587 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
588 map<t_frequency::type, double>::const_iterator it;
589 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
590 t_frequency::type tFreq = it->first;
591 dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]);
592 if (OPT->PPPRTK) {
593 dispPart += it->second * (_model._ionoCodeDelay[tFreq]);
594 }
595 }
596 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
597 t_frequency::type tFreq = it->first;
598 dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] +
599 _model._windUp * t_CST::lambda(tFreq, _channel));
600 if (OPT->PPPRTK) {
601 dispPart += it->second * (- _model._ionoCodeDelay[tFreq]);
602 }
603 }
604 cmpValue = nonDisp + dispPart;
605 }
606
607 return cmpValue;
608}
609
610//
611////////////////////////////////////////////////////////////////////////////
612void t_pppSatObs::setRes(t_lc::type tLC, double res) {
613 _res[tLC] = res;
614}
615
616//
617////////////////////////////////////////////////////////////////////////////
618double t_pppSatObs::getRes(t_lc::type tLC) const {
619 map<t_lc::type, double>::const_iterator it = _res.find(tLC);
620 if (it != _res.end()) {
621 return it->second;
622 }
623 else {
624 return 0.0;
625 }
626}
627
628//
629////////////////////////////////////////////////////////////////////////////
630void t_pppSatObs::setPseudoObsIono(t_frequency::type freq, double stecRefSat) {
631 _stecSat = _model._ionoCodeDelay[freq];
632 _stecRefSat = stecRefSat;
633}
Note: See TracBrowser for help on using the repository browser.