source: ntrip/trunk/BNC/src/PPP/pppSatObs.cpp@ 9577

Last change on this file since 9577 was 9577, checked in by stuerze, 2 years ago

minor changes

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 22.3 KB
RevLine 
[7237]1/* -------------------------------------------------------------------------
2 * BKG NTRIP Client
3 * -------------------------------------------------------------------------
4 *
5 * Class: t_pppSatObs
6 *
7 * Purpose: Satellite observations
8 *
9 * Author: L. Mervart
10 *
11 * Created: 29-Jul-2014
12 *
[7288]13 * Changes:
[7237]14 *
15 * -----------------------------------------------------------------------*/
16
17
18#include <iostream>
[9473]19#include <iomanip>
[7237]20#include <cmath>
21#include <newmatio.h>
22
23#include "pppSatObs.h"
24#include "bncconst.h"
25#include "pppEphPool.h"
26#include "pppStation.h"
27#include "bncutils.h"
28#include "bncantex.h"
29#include "pppObsPool.h"
30#include "pppClient.h"
31
32using namespace BNC_PPP;
33using namespace std;
34
35// Constructor
36////////////////////////////////////////////////////////////////////////////
37t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) {
[8905]38 _prn = pppSatObs._prn;
39 _time = pppSatObs._time;
40 _outlier = false;
41 _valid = true;
42 _reference = false;
43 _stecRefSat = 0.0;
44 _stecSat = 0.0;
[7237]45 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
46 _obs[ii] = 0;
47 }
48 prepareObs(pppSatObs);
49}
50
51// Destructor
52////////////////////////////////////////////////////////////////////////////
53t_pppSatObs::~t_pppSatObs() {
54 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
55 delete _obs[iFreq];
56 }
57}
58
[7288]59//
[7237]60////////////////////////////////////////////////////////////////////////////
61void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) {
62
63 _model.reset();
64
[9446]65 // Select pseudo-ranges and phase observations
[9386]66 // -------------------------------------------
[9560]67 string preferredAttrib = "G:12&WCPSLX R:12&PC E:1&CBX E:5&QIX C:26&IQX";
68 if (OPT->_obsModelType == OPT->DCMcodeBias ||
69 OPT->_obsModelType == OPT->DCMphaseBias) {
[9562]70 // at the moment only one code or phase bias per system (G,R,E,C)/modulation considered,
71 preferredAttrib = "G:12&W R:12&P E:1&CX E:5&QX C:26&I";
[9560]72 }
[7237]73
74 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
75 string frqNum = t_frequency::toString(t_frequency::type(iFreq)).substr(1);
76 for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) {
77 string obsType = (preferredAttrib[iPref] == '_') ? frqNum : frqNum + preferredAttrib[iPref];
78 if (_obs[iFreq] == 0) {
79 for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) {
80 const t_frqObs* obs = pppSatObs._obs[ii];
[8026]81 if (obs->_rnxType2ch == obsType &&
82 obs->_codeValid && obs->_code &&
[9568]83 obs->_phaseValid && obs->_phase &&
84 obs->_lockTimeValid && obs->_lockTime > 5.0) {
[7237]85 _obs[iFreq] = new t_frqObs(*obs);
86 }
87 }
88 }
89 }
90 }
91
92 // Used frequency types
93 // --------------------
94 _fType1 = t_lc::toFreq(_prn.system(),t_lc::l1);
95 _fType2 = t_lc::toFreq(_prn.system(),t_lc::l2);
96
97 // Check whether all required frequencies available
98 // ------------------------------------------------
99 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
100 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
[9548]101 if (tLC == t_lc::GIM) {continue;}
[7237]102 if (!isValid(tLC)) {
103 _valid = false;
104 return;
105 }
106 }
107
[9560]108 // Find GLONASS Channel Number
[7237]109 // ---------------------------
110 if (_prn.system() == 'R') {
111 _channel = PPP_CLIENT->ephPool()->getChannel(_prn);
112 }
113 else {
114 _channel = 0;
115 }
116
117 // Compute Satellite Coordinates at Time of Transmission
118 // -----------------------------------------------------
[8619]119 _xcSat.ReSize(6); _xcSat = 0.0;
[8495]120 _vvSat.ReSize(3); _vvSat = 0.0;
[7237]121 bool totOK = false;
[8619]122 ColumnVector satPosOld(6); satPosOld = 0.0;
[7237]123 t_lc::type tLC = isValid(t_lc::cIF) ? t_lc::cIF : t_lc::c1;
124 double prange = obsValue(tLC);
125 for (int ii = 1; ii <= 10; ii++) {
126 bncTime ToT = _time - prange / t_CST::c - _xcSat[3];
127 if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) {
128 _valid = false;
129 return;
130 }
131 ColumnVector dx = _xcSat - satPosOld;
132 dx[3] *= t_CST::c;
[8905]133 if (dx.NormFrobenius() < 1.e-4) {
[7237]134 totOK = true;
135 break;
136 }
[7288]137 satPosOld = _xcSat;
[7237]138 }
139 if (totOK) {
[7250]140 _signalPropagationTime = prange / t_CST::c - _xcSat[3];
[7288]141 _model._satClkM = _xcSat[3] * t_CST::c;
[7237]142 }
143 else {
144 _valid = false;
145 }
146}
147
[7288]148//
[7237]149////////////////////////////////////////////////////////////////////////////
[7288]150void t_pppSatObs::lcCoeff(t_lc::type tLC,
[7237]151 map<t_frequency::type, double>& codeCoeff,
[8905]152 map<t_frequency::type, double>& phaseCoeff,
153 map<t_frequency::type, double>& ionoCoeff) const {
[7237]154
155 codeCoeff.clear();
156 phaseCoeff.clear();
[8905]157 ionoCoeff.clear();
[7237]158
159 double f1 = t_CST::freq(_fType1, _channel);
160 double f2 = t_CST::freq(_fType2, _channel);
[8905]161 double f1GPS = t_CST::freq(t_frequency::G1, 0);
[7237]162
163 switch (tLC) {
164 case t_lc::l1:
[8905]165 phaseCoeff[_fType1] = 1.0;
166 ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2);
[7237]167 return;
[7288]168 case t_lc::l2:
[8905]169 phaseCoeff[_fType2] = 1.0;
170 ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2);
[7237]171 return;
[7288]172 case t_lc::lIF:
[7237]173 phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
174 phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
175 return;
[7288]176 case t_lc::MW:
[7237]177 phaseCoeff[_fType1] = f1 / (f1 - f2);
178 phaseCoeff[_fType2] = -f2 / (f1 - f2);
179 codeCoeff[_fType1] = -f1 / (f1 + f2);
180 codeCoeff[_fType2] = -f2 / (f1 + f2);
181 return;
[7288]182 case t_lc::CL:
[7237]183 phaseCoeff[_fType1] = 0.5;
[8905]184 codeCoeff [_fType1] = 0.5;
[7237]185 return;
[7288]186 case t_lc::c1:
187 codeCoeff[_fType1] = 1.0;
[8905]188 ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2);
[7237]189 return;
[7288]190 case t_lc::c2:
191 codeCoeff[_fType2] = 1.0;
[8905]192 ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2);
[7237]193 return;
[7288]194 case t_lc::cIF:
[7237]195 codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
196 codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
197 return;
[8905]198 case t_lc::GIM:
[7288]199 case t_lc::dummy:
200 case t_lc::maxLc:
[7237]201 return;
202 }
203}
204
[7288]205//
[7237]206////////////////////////////////////////////////////////////////////////////
207bool t_pppSatObs::isValid(t_lc::type tLC) const {
208 bool valid = true;
209 obsValue(tLC, &valid);
[9497]210
[7237]211 return valid;
212}
[7288]213//
[7237]214////////////////////////////////////////////////////////////////////////////
215double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const {
216
[8905]217 double retVal = 0.0;
218 if (valid) *valid = true;
219
220 // Pseudo observations
221 if (tLC == t_lc::GIM) {
222 if (_stecRefSat == 0.0 || _stecSat == 0.0) {
223 if (valid) *valid = false;
224 return 0.0;
225 }
226 else {
[8961]227 return _stecRefSat;
[8905]228 }
229 }
230
[7237]231 map<t_frequency::type, double> codeCoeff;
232 map<t_frequency::type, double> phaseCoeff;
[8905]233 map<t_frequency::type, double> ionoCoeff;
234 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
[7237]235
[8905]236 map<t_frequency::type, double>::const_iterator it;
[7237]237
[8905]238 // Code observations
[7237]239 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
240 t_frequency::type tFreq = it->first;
241 if (_obs[tFreq] == 0) {
242 if (valid) *valid = false;
243 return 0.0;
244 }
245 else {
246 retVal += it->second * _obs[tFreq]->_code;
247 }
248 }
[8905]249 // Phase observations
[7237]250 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
251 t_frequency::type tFreq = it->first;
252 if (_obs[tFreq] == 0) {
253 if (valid) *valid = false;
254 return 0.0;
255 }
256 else {
257 retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel);
258 }
259 }
260 return retVal;
261}
262
[7288]263//
[7237]264////////////////////////////////////////////////////////////////////////////
265double t_pppSatObs::lambda(t_lc::type tLC) const {
266
267 double f1 = t_CST::freq(_fType1, _channel);
268 double f2 = t_CST::freq(_fType2, _channel);
269
270 if (tLC == t_lc::l1) {
271 return t_CST::c / f1;
272 }
273 else if (tLC == t_lc::l2) {
274 return t_CST::c / f2;
275 }
276 else if (tLC == t_lc::lIF) {
277 return t_CST::c / (f1 + f2);
278 }
279 else if (tLC == t_lc::MW) {
280 return t_CST::c / (f1 - f2);
281 }
282 else if (tLC == t_lc::CL) {
283 return t_CST::c / f1 / 2.0;
284 }
285
286 return 0.0;
287}
288
[7288]289//
[7237]290////////////////////////////////////////////////////////////////////////////
291double t_pppSatObs::sigma(t_lc::type tLC) const {
292
[8905]293 double retVal = 0.0;
[7237]294 map<t_frequency::type, double> codeCoeff;
295 map<t_frequency::type, double> phaseCoeff;
[8905]296 map<t_frequency::type, double> ionoCoeff;
297 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
[7237]298
[8905]299 if (tLC == t_lc::GIM) {
[9386]300 retVal = OPT->_sigmaGIM * OPT->_sigmaGIM + OPT->_sigmaGIM * OPT->_sigmaGIM;
[8905]301 }
[7237]302
303 map<t_frequency::type, double>::const_iterator it;
[9473]304 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
[7237]305 retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1;
306 }
[8905]307
[9473]308 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
[7237]309 retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1;
310 }
311
[7288]312 retVal = sqrt(retVal);
[9551]313
[9565]314 // De-Weight measurements
[9566]315 // ----------------------
[9575]316 if (_prn.system() == 'R' &&
[9576]317 (t_lc::includesCode(tLC) || t_lc::includesPhase(tLC))) {
[9569]318 retVal *= 10.0;
[9562]319 }
[9566]320
[7237]321 // Elevation-Dependent Weighting
322 // -----------------------------
323 double cEle = 1.0;
324 if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) ||
325 (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) {
326 double eleD = eleSat()*180.0/M_PI;
327 double hlp = fabs(90.0 - eleD);
328 cEle = (1.0 + hlp*hlp*hlp*0.000004);
329 }
330
331 return cEle * retVal;
332}
333
[7288]334//
[7237]335////////////////////////////////////////////////////////////////////////////
[9386]336double t_pppSatObs::maxRes(t_lc::type tLC) const {
[8905]337 double retVal = 0.0;
[7237]338
339 map<t_frequency::type, double> codeCoeff;
340 map<t_frequency::type, double> phaseCoeff;
[8905]341 map<t_frequency::type, double> ionoCoeff;
342 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
[7237]343
344 map<t_frequency::type, double>::const_iterator it;
[9473]345 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
[7237]346 retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1;
347 }
[9473]348 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
[7237]349 retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1;
350 }
[8905]351 if (tLC == t_lc::GIM) {
[9553]352 retVal = OPT->_maxResGIM * OPT->_maxResGIM + OPT->_maxResGIM * OPT->_maxResGIM;
[8905]353 }
[9386]354
355 retVal = sqrt(retVal);
[9537]356
[9577]357 if (_prn.system() == 'R' &&
358 (t_lc::includesCode(tLC) || t_lc::includesPhase(tLC))) {
359 retVal *= 2.0;
360 }
361
[9561]362 return retVal;
[7237]363}
364
365
[7288]366//
[7237]367////////////////////////////////////////////////////////////////////////////
368t_irc t_pppSatObs::cmpModel(const t_pppStation* station) {
369
370 // Reset all model values
371 // ----------------------
372 _model.reset();
373
374 // Topocentric Satellite Position
375 // ------------------------------
376 ColumnVector rSat = _xcSat.Rows(1,3);
[8905]377 ColumnVector rRec = station->xyzApr();
378 ColumnVector rhoV = rSat - rRec;
379 _model._rho = rhoV.NormFrobenius();
[7237]380
[8619]381 ColumnVector vSat = _vvSat;
382
[7237]383 ColumnVector neu(3);
384 xyz2neu(station->ellApr().data(), rhoV.data(), neu.data());
385
[8905]386 _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho);
[7237]387 if (neu[2] < 0) {
388 _model._eleSat *= -1.0;
389 }
390 _model._azSat = atan2(neu[1], neu[0]);
391
[9485]392 // Sun unit vector
393 ColumnVector xSun = t_astro::Sun(_time.mjddec());
394 xSun /= xSun.norm_Frobenius();
395
396 // Satellite unit vectors sz, sy, sx
397 ColumnVector sz = -rSat / rSat.norm_Frobenius();
398 ColumnVector sy = crossproduct(sz, xSun);
399 ColumnVector sx = crossproduct(sy, sz);
400
401 sx /= sx.norm_Frobenius();
402 sy /= sy.norm_Frobenius();
403
404 // LOS unit vector satellite --> receiver
405 ColumnVector rho = rRec - rSat;
406 rho /= rho.norm_Frobenius();
407
408 // LOS vector in satellite frame
409 ColumnVector u(3);
410 u(1) = dotproduct(sx, rho);
411 u(2) = dotproduct(sy, rho);
412 u(3) = dotproduct(sz, rho);
413
414 // Azimuth and elevation in satellite antenna frame
415 _model._elTx = atan2(u(3),sqrt(pow(u(2),2)+pow(u(1),2)));
416 _model._azTx = atan2(u(2),u(1));
417
418
[7237]419 // Satellite Clocks
420 // ----------------
421 _model._satClkM = _xcSat[3] * t_CST::c;
422
423 // Receiver Clocks
424 // ---------------
425 _model._recClkM = station->dClk() * t_CST::c;
426
427 // Sagnac Effect (correction due to Earth rotation)
428 // ------------------------------------------------
429 ColumnVector Omega(3);
430 Omega[0] = 0.0;
431 Omega[1] = 0.0;
432 Omega[2] = t_CST::omega / t_CST::c;
[8905]433 _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec));
[7237]434
435 // Antenna Eccentricity
436 // --------------------
437 _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho;
438
439 // Antenna Phase Center Offsets and Variations
440 // -------------------------------------------
441 if (PPP_CLIENT->antex()) {
442 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
443 t_frequency::type frqType = static_cast<t_frequency::type>(ii);
444 bool found;
[9485]445 QString prn(_prn.toString().c_str());
446 _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType, _model._eleSat, _model._azSat, found);
447 _model._antPCO[ii] += PPP_CLIENT->antex()->satCorr(prn, frqType, _model._elTx, _model._azTx, found);
[9560]448 if (OPT->_isAPC && found) {
[9485]449 // the PCOs as given in the satellite antenna correction for all frequencies
450 // have to be reduced by the PCO of the reference frequency
451 if (_prn.system() == 'G') {
452 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::G1, _model._elTx, _model._azTx, found);
453 }
454 else if (_prn.system() == 'R') {
455 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::R1, _model._elTx, _model._azTx, found);
456 }
457 else if (_prn.system() == 'E') {
458 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::E1, _model._elTx, _model._azTx, found);
459 }
460 else if (_prn.system() == 'C') {
461 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::C2, _model._elTx, _model._azTx, found);
462 }
463 }
[7237]464 }
465 }
466
467 // Tropospheric Delay
468 // ------------------
[8961]469 _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat);
[7237]470
471 // Code Biases
472 // -----------
473 const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn);
[7288]474 if (satCodeBias) {
[7237]475 for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) {
476 const t_frqCodeBias& bias = satCodeBias->_bias[ii];
477 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
478 const t_frqObs* obs = _obs[iFreq];
479 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
480 _model._codeBias[iFreq] = bias._value;
481 }
482 }
483 }
484 }
485
[7288]486 // Phase Biases
487 // -----------
488 const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn);
[8619]489 double yaw = 0.0;
490 bool ssr = false;
[7288]491 if (satPhaseBias) {
[8905]492 double dt = station->epochTime() - satPhaseBias->_time;
493 if (satPhaseBias->_updateInt) {
494 dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]);
495 }
496 yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt;
[8619]497 ssr = true;
[7288]498 for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) {
499 const t_frqPhaseBias& bias = satPhaseBias->_bias[ii];
500 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
501 const t_frqObs* obs = _obs[iFreq];
502 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
503 _model._phaseBias[iFreq] = bias._value;
504 }
505 }
506 }
507 }
508
[8619]509 // Phase Wind-Up
510 // -------------
511 _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ;
512
[8905]513 // Relativistic effect due to earth gravity
514 // ----------------------------------------
515 double a = rSat.NormFrobenius() + rRec.NormFrobenius();
516 double b = (rSat - rRec).NormFrobenius();
517 double gm = 3.986004418e14; // m3/s2
518 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b));
[8619]519
[7237]520 // Tidal Correction
521 // ----------------
[8905]522 _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho;
523 _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho;
[7237]524
525 // Ionospheric Delay
526 // -----------------
[7250]527 const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec();
[7253]528 bool vTecUsage = true;
529 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
530 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
531 if (tLC == t_lc::cIF || tLC == t_lc::lIF) {
532 vTecUsage = false;
[7237]533 }
534 }
[8905]535
[7258]536 if (vTecUsage && vTec) {
[8905]537 double stec = station->stec(vTec, _signalPropagationTime, rSat);
538 double f1GPS = t_CST::freq(t_frequency::G1, 0);
[7258]539 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
[8905]540 if (OPT->_pseudoObsIono) { // DCMcodeBias, DCMphaseBias
541 // For scaling the slant ionospheric delays the trick is to be consistent with units!
542 // The conversion of TECU into meters requires the frequency of the signal.
543 // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff().
544 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec;
545 }
546 else { // PPP-RTK
547 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
548 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec;
549 }
[7253]550 }
551 }
[7237]552
553 // Set Model Set Flag
554 // ------------------
555 _model._set = true;
556
[8956]557 //printModel();
[7252]558
[7237]559 return success;
560}
561
[7288]562//
[7237]563////////////////////////////////////////////////////////////////////////////
564void t_pppSatObs::printModel() const {
[8956]565
566 LOG.setf(ios::fixed);
567 LOG << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "")
568
569 << "======================= " << endl
570 << "PPP STRATEGY : " << OPT->_obsmodelTypeStr.at((int)OPT->_obsModelType).toLocal8Bit().constData()
571 << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl
[8905]572 << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl
573 << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl
574 << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl
575 << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl
576 << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl
577 << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl
578 << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl
579 << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl
580 << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl
581 << "REL : " << setw(12) << setprecision(3) << _model._rel << endl
582 << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl
583 << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl
584 << endl
585 << "FREQUENCY DEPENDENT CORRECTIONS:" << endl
586 << "-------------------------------" << endl;
[7237]587 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
588 if (_obs[iFreq]) {
[7288]589 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
590 if (_prn.system() == frqStr[0]) {
[8956]591 LOG << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl
[8905]592 << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << endl
593 << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << endl
594 << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl;
[7288]595 }
[7237]596 }
597 }
[8905]598}
599
600//
601////////////////////////////////////////////////////////////////////////////
602void t_pppSatObs::printObsMinusComputed() const {
603// TODO: cout should be LOG
604 cout.setf(ios::fixed);
605 cout << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
606 << "========================== " << endl;
[7253]607 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
608 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
[8905]609 cout << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " "
[7253]610 << setw(12) << setprecision(3) << obsValue(tLC) << " "
611 << setw(12) << setprecision(3) << cmpValue(tLC) << " "
612 << setw(12) << setprecision(3) << obsValue(tLC) - cmpValue(tLC) << endl;
613 }
[7237]614}
615
[8905]616
[7288]617//
[7237]618////////////////////////////////////////////////////////////////////////////
619double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const {
620 return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM;
621}
622
[7288]623//
[7237]624////////////////////////////////////////////////////////////////////////////
625double t_pppSatObs::cmpValue(t_lc::type tLC) const {
[8905]626 double cmpValue;
[7237]627
[8905]628 if (!isValid(tLC)) {
629 cmpValue = 0.0;
[7237]630 }
[8905]631 else if (tLC == t_lc::GIM) {
[8961]632 cmpValue = _stecSat;
[8905]633 }
634 else {
635 // Non-Dispersive Part
636 // -------------------
637 double nonDisp = _model._rho
638 + _model._recClkM - _model._satClkM
639 + _model._sagnac + _model._antEcc + _model._tropo
640 + _model._tideEarth + _model._tideOcean + _model._rel;
[7237]641
[8905]642 // Add Dispersive Part
643 // -------------------
644 double dispPart = 0.0;
645 map<t_frequency::type, double> codeCoeff;
646 map<t_frequency::type, double> phaseCoeff;
647 map<t_frequency::type, double> ionoCoeff;
648 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
649 map<t_frequency::type, double>::const_iterator it;
650 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
651 t_frequency::type tFreq = it->first;
652 dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]);
653 if (OPT->PPPRTK) {
654 dispPart += it->second * (_model._ionoCodeDelay[tFreq]);
655 }
656 }
657 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
658 t_frequency::type tFreq = it->first;
659 dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] +
660 _model._windUp * t_CST::lambda(tFreq, _channel));
661 if (OPT->PPPRTK) {
662 dispPart += it->second * (- _model._ionoCodeDelay[tFreq]);
663 }
664 }
665 cmpValue = nonDisp + dispPart;
[7237]666 }
667
[8905]668 return cmpValue;
[7237]669}
670
[7288]671//
[7237]672////////////////////////////////////////////////////////////////////////////
673void t_pppSatObs::setRes(t_lc::type tLC, double res) {
674 _res[tLC] = res;
675}
676
[7288]677//
[7237]678////////////////////////////////////////////////////////////////////////////
679double t_pppSatObs::getRes(t_lc::type tLC) const {
680 map<t_lc::type, double>::const_iterator it = _res.find(tLC);
681 if (it != _res.end()) {
682 return it->second;
683 }
684 else {
685 return 0.0;
686 }
687}
[8905]688
689//
690////////////////////////////////////////////////////////////////////////////
691void t_pppSatObs::setPseudoObsIono(t_frequency::type freq, double stecRefSat) {
692 _stecSat = _model._ionoCodeDelay[freq];
693 _stecRefSat = stecRefSat;
694}
Note: See TracBrowser for help on using the repository browser.