1 | /* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
|
---|
2 | * Qwt Widget Library
|
---|
3 | * Copyright (C) 1997 Josef Wilgen
|
---|
4 | * Copyright (C) 2002 Uwe Rathmann
|
---|
5 | *
|
---|
6 | * This library is free software; you can redistribute it and/or
|
---|
7 | * modify it under the terms of the Qwt License, Version 1.0
|
---|
8 | *****************************************************************************/
|
---|
9 |
|
---|
10 | #include "qwt_spline.h"
|
---|
11 | #include "qwt_math.h"
|
---|
12 |
|
---|
13 | class QwtSpline::PrivateData
|
---|
14 | {
|
---|
15 | public:
|
---|
16 | PrivateData():
|
---|
17 | splineType( QwtSpline::Natural )
|
---|
18 | {
|
---|
19 | }
|
---|
20 |
|
---|
21 | QwtSpline::SplineType splineType;
|
---|
22 |
|
---|
23 | // coefficient vectors
|
---|
24 | QVector<double> a;
|
---|
25 | QVector<double> b;
|
---|
26 | QVector<double> c;
|
---|
27 |
|
---|
28 | // control points
|
---|
29 | QPolygonF points;
|
---|
30 | };
|
---|
31 |
|
---|
32 | static int lookup( double x, const QPolygonF &values )
|
---|
33 | {
|
---|
34 | #if 0
|
---|
35 | //qLowerBound/qHigherBound ???
|
---|
36 | #endif
|
---|
37 | int i1;
|
---|
38 | const int size = values.size();
|
---|
39 |
|
---|
40 | if ( x <= values[0].x() )
|
---|
41 | i1 = 0;
|
---|
42 | else if ( x >= values[size - 2].x() )
|
---|
43 | i1 = size - 2;
|
---|
44 | else
|
---|
45 | {
|
---|
46 | i1 = 0;
|
---|
47 | int i2 = size - 2;
|
---|
48 | int i3 = 0;
|
---|
49 |
|
---|
50 | while ( i2 - i1 > 1 )
|
---|
51 | {
|
---|
52 | i3 = i1 + ( ( i2 - i1 ) >> 1 );
|
---|
53 |
|
---|
54 | if ( values[i3].x() > x )
|
---|
55 | i2 = i3;
|
---|
56 | else
|
---|
57 | i1 = i3;
|
---|
58 | }
|
---|
59 | }
|
---|
60 | return i1;
|
---|
61 | }
|
---|
62 |
|
---|
63 | //! Constructor
|
---|
64 | QwtSpline::QwtSpline()
|
---|
65 | {
|
---|
66 | d_data = new PrivateData;
|
---|
67 | }
|
---|
68 |
|
---|
69 | /*!
|
---|
70 | Copy constructor
|
---|
71 | \param other Spline used for initialization
|
---|
72 | */
|
---|
73 | QwtSpline::QwtSpline( const QwtSpline& other )
|
---|
74 | {
|
---|
75 | d_data = new PrivateData( *other.d_data );
|
---|
76 | }
|
---|
77 |
|
---|
78 | /*!
|
---|
79 | Assignment operator
|
---|
80 | \param other Spline used for initialization
|
---|
81 | \return *this
|
---|
82 | */
|
---|
83 | QwtSpline &QwtSpline::operator=( const QwtSpline & other )
|
---|
84 | {
|
---|
85 | *d_data = *other.d_data;
|
---|
86 | return *this;
|
---|
87 | }
|
---|
88 |
|
---|
89 | //! Destructor
|
---|
90 | QwtSpline::~QwtSpline()
|
---|
91 | {
|
---|
92 | delete d_data;
|
---|
93 | }
|
---|
94 |
|
---|
95 | /*!
|
---|
96 | Select the algorithm used for calculating the spline
|
---|
97 |
|
---|
98 | \param splineType Spline type
|
---|
99 | \sa splineType()
|
---|
100 | */
|
---|
101 | void QwtSpline::setSplineType( SplineType splineType )
|
---|
102 | {
|
---|
103 | d_data->splineType = splineType;
|
---|
104 | }
|
---|
105 |
|
---|
106 | /*!
|
---|
107 | \return the spline type
|
---|
108 | \sa setSplineType()
|
---|
109 | */
|
---|
110 | QwtSpline::SplineType QwtSpline::splineType() const
|
---|
111 | {
|
---|
112 | return d_data->splineType;
|
---|
113 | }
|
---|
114 |
|
---|
115 | /*!
|
---|
116 | \brief Calculate the spline coefficients
|
---|
117 |
|
---|
118 | Depending on the value of \a periodic, this function
|
---|
119 | will determine the coefficients for a natural or a periodic
|
---|
120 | spline and store them internally.
|
---|
121 |
|
---|
122 | \param points Points
|
---|
123 | \return true if successful
|
---|
124 | \warning The sequence of x (but not y) values has to be strictly monotone
|
---|
125 | increasing, which means <code>points[i].x() < points[i+1].x()</code>.
|
---|
126 | If this is not the case, the function will return false
|
---|
127 | */
|
---|
128 | bool QwtSpline::setPoints( const QPolygonF& points )
|
---|
129 | {
|
---|
130 | const int size = points.size();
|
---|
131 | if ( size <= 2 )
|
---|
132 | {
|
---|
133 | reset();
|
---|
134 | return false;
|
---|
135 | }
|
---|
136 |
|
---|
137 | d_data->points = points;
|
---|
138 |
|
---|
139 | d_data->a.resize( size - 1 );
|
---|
140 | d_data->b.resize( size - 1 );
|
---|
141 | d_data->c.resize( size - 1 );
|
---|
142 |
|
---|
143 | bool ok;
|
---|
144 | if ( d_data->splineType == Periodic )
|
---|
145 | ok = buildPeriodicSpline( points );
|
---|
146 | else
|
---|
147 | ok = buildNaturalSpline( points );
|
---|
148 |
|
---|
149 | if ( !ok )
|
---|
150 | reset();
|
---|
151 |
|
---|
152 | return ok;
|
---|
153 | }
|
---|
154 |
|
---|
155 | /*!
|
---|
156 | \return Points, that have been by setPoints()
|
---|
157 | */
|
---|
158 | QPolygonF QwtSpline::points() const
|
---|
159 | {
|
---|
160 | return d_data->points;
|
---|
161 | }
|
---|
162 |
|
---|
163 | //! \return A coefficients
|
---|
164 | const QVector<double> &QwtSpline::coefficientsA() const
|
---|
165 | {
|
---|
166 | return d_data->a;
|
---|
167 | }
|
---|
168 |
|
---|
169 | //! \return B coefficients
|
---|
170 | const QVector<double> &QwtSpline::coefficientsB() const
|
---|
171 | {
|
---|
172 | return d_data->b;
|
---|
173 | }
|
---|
174 |
|
---|
175 | //! \return C coefficients
|
---|
176 | const QVector<double> &QwtSpline::coefficientsC() const
|
---|
177 | {
|
---|
178 | return d_data->c;
|
---|
179 | }
|
---|
180 |
|
---|
181 |
|
---|
182 | //! Free allocated memory and set size to 0
|
---|
183 | void QwtSpline::reset()
|
---|
184 | {
|
---|
185 | d_data->a.resize( 0 );
|
---|
186 | d_data->b.resize( 0 );
|
---|
187 | d_data->c.resize( 0 );
|
---|
188 | d_data->points.resize( 0 );
|
---|
189 | }
|
---|
190 |
|
---|
191 | //! True if valid
|
---|
192 | bool QwtSpline::isValid() const
|
---|
193 | {
|
---|
194 | return d_data->a.size() > 0;
|
---|
195 | }
|
---|
196 |
|
---|
197 | /*!
|
---|
198 | Calculate the interpolated function value corresponding
|
---|
199 | to a given argument x.
|
---|
200 |
|
---|
201 | \param x Coordinate
|
---|
202 | \return Interpolated coordinate
|
---|
203 | */
|
---|
204 | double QwtSpline::value( double x ) const
|
---|
205 | {
|
---|
206 | if ( d_data->a.size() == 0 )
|
---|
207 | return 0.0;
|
---|
208 |
|
---|
209 | const int i = lookup( x, d_data->points );
|
---|
210 |
|
---|
211 | const double delta = x - d_data->points[i].x();
|
---|
212 | return( ( ( ( d_data->a[i] * delta ) + d_data->b[i] )
|
---|
213 | * delta + d_data->c[i] ) * delta + d_data->points[i].y() );
|
---|
214 | }
|
---|
215 |
|
---|
216 | /*!
|
---|
217 | \brief Determines the coefficients for a natural spline
|
---|
218 | \return true if successful
|
---|
219 | */
|
---|
220 | bool QwtSpline::buildNaturalSpline( const QPolygonF &points )
|
---|
221 | {
|
---|
222 | int i;
|
---|
223 |
|
---|
224 | const QPointF *p = points.data();
|
---|
225 | const int size = points.size();
|
---|
226 |
|
---|
227 | double *a = d_data->a.data();
|
---|
228 | double *b = d_data->b.data();
|
---|
229 | double *c = d_data->c.data();
|
---|
230 |
|
---|
231 | // set up tridiagonal equation system; use coefficient
|
---|
232 | // vectors as temporary buffers
|
---|
233 | QVector<double> h( size - 1 );
|
---|
234 | for ( i = 0; i < size - 1; i++ )
|
---|
235 | {
|
---|
236 | h[i] = p[i+1].x() - p[i].x();
|
---|
237 | if ( h[i] <= 0 )
|
---|
238 | return false;
|
---|
239 | }
|
---|
240 |
|
---|
241 | QVector<double> d( size - 1 );
|
---|
242 | double dy1 = ( p[1].y() - p[0].y() ) / h[0];
|
---|
243 | for ( i = 1; i < size - 1; i++ )
|
---|
244 | {
|
---|
245 | b[i] = c[i] = h[i];
|
---|
246 | a[i] = 2.0 * ( h[i-1] + h[i] );
|
---|
247 |
|
---|
248 | const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i];
|
---|
249 | d[i] = 6.0 * ( dy1 - dy2 );
|
---|
250 | dy1 = dy2;
|
---|
251 | }
|
---|
252 |
|
---|
253 | //
|
---|
254 | // solve it
|
---|
255 | //
|
---|
256 |
|
---|
257 | // L-U Factorization
|
---|
258 | for ( i = 1; i < size - 2; i++ )
|
---|
259 | {
|
---|
260 | c[i] /= a[i];
|
---|
261 | a[i+1] -= b[i] * c[i];
|
---|
262 | }
|
---|
263 |
|
---|
264 | // forward elimination
|
---|
265 | QVector<double> s( size );
|
---|
266 | s[1] = d[1];
|
---|
267 | for ( i = 2; i < size - 1; i++ )
|
---|
268 | s[i] = d[i] - c[i-1] * s[i-1];
|
---|
269 |
|
---|
270 | // backward elimination
|
---|
271 | s[size - 2] = - s[size - 2] / a[size - 2];
|
---|
272 | for ( i = size - 3; i > 0; i-- )
|
---|
273 | s[i] = - ( s[i] + b[i] * s[i+1] ) / a[i];
|
---|
274 | s[size - 1] = s[0] = 0.0;
|
---|
275 |
|
---|
276 | //
|
---|
277 | // Finally, determine the spline coefficients
|
---|
278 | //
|
---|
279 | for ( i = 0; i < size - 1; i++ )
|
---|
280 | {
|
---|
281 | a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] );
|
---|
282 | b[i] = 0.5 * s[i];
|
---|
283 | c[i] = ( p[i+1].y() - p[i].y() ) / h[i]
|
---|
284 | - ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
|
---|
285 | }
|
---|
286 |
|
---|
287 | return true;
|
---|
288 | }
|
---|
289 |
|
---|
290 | /*!
|
---|
291 | \brief Determines the coefficients for a periodic spline
|
---|
292 | \return true if successful
|
---|
293 | */
|
---|
294 | bool QwtSpline::buildPeriodicSpline( const QPolygonF &points )
|
---|
295 | {
|
---|
296 | int i;
|
---|
297 |
|
---|
298 | const QPointF *p = points.data();
|
---|
299 | const int size = points.size();
|
---|
300 |
|
---|
301 | double *a = d_data->a.data();
|
---|
302 | double *b = d_data->b.data();
|
---|
303 | double *c = d_data->c.data();
|
---|
304 |
|
---|
305 | QVector<double> d( size - 1 );
|
---|
306 | QVector<double> h( size - 1 );
|
---|
307 | QVector<double> s( size );
|
---|
308 |
|
---|
309 | //
|
---|
310 | // setup equation system; use coefficient
|
---|
311 | // vectors as temporary buffers
|
---|
312 | //
|
---|
313 | for ( i = 0; i < size - 1; i++ )
|
---|
314 | {
|
---|
315 | h[i] = p[i+1].x() - p[i].x();
|
---|
316 | if ( h[i] <= 0.0 )
|
---|
317 | return false;
|
---|
318 | }
|
---|
319 |
|
---|
320 | const int imax = size - 2;
|
---|
321 | double htmp = h[imax];
|
---|
322 | double dy1 = ( p[0].y() - p[imax].y() ) / htmp;
|
---|
323 | for ( i = 0; i <= imax; i++ )
|
---|
324 | {
|
---|
325 | b[i] = c[i] = h[i];
|
---|
326 | a[i] = 2.0 * ( htmp + h[i] );
|
---|
327 | const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i];
|
---|
328 | d[i] = 6.0 * ( dy1 - dy2 );
|
---|
329 | dy1 = dy2;
|
---|
330 | htmp = h[i];
|
---|
331 | }
|
---|
332 |
|
---|
333 | //
|
---|
334 | // solve it
|
---|
335 | //
|
---|
336 |
|
---|
337 | // L-U Factorization
|
---|
338 | a[0] = qSqrt( a[0] );
|
---|
339 | c[0] = h[imax] / a[0];
|
---|
340 | double sum = 0;
|
---|
341 |
|
---|
342 | for ( i = 0; i < imax - 1; i++ )
|
---|
343 | {
|
---|
344 | b[i] /= a[i];
|
---|
345 | if ( i > 0 )
|
---|
346 | c[i] = - c[i-1] * b[i-1] / a[i];
|
---|
347 | a[i+1] = qSqrt( a[i+1] - qwtSqr( b[i] ) );
|
---|
348 | sum += qwtSqr( c[i] );
|
---|
349 | }
|
---|
350 | b[imax-1] = ( b[imax-1] - c[imax-2] * b[imax-2] ) / a[imax-1];
|
---|
351 | a[imax] = qSqrt( a[imax] - qwtSqr( b[imax-1] ) - sum );
|
---|
352 |
|
---|
353 |
|
---|
354 | // forward elimination
|
---|
355 | s[0] = d[0] / a[0];
|
---|
356 | sum = 0;
|
---|
357 | for ( i = 1; i < imax; i++ )
|
---|
358 | {
|
---|
359 | s[i] = ( d[i] - b[i-1] * s[i-1] ) / a[i];
|
---|
360 | sum += c[i-1] * s[i-1];
|
---|
361 | }
|
---|
362 | s[imax] = ( d[imax] - b[imax-1] * s[imax-1] - sum ) / a[imax];
|
---|
363 |
|
---|
364 |
|
---|
365 | // backward elimination
|
---|
366 | s[imax] = - s[imax] / a[imax];
|
---|
367 | s[imax-1] = -( s[imax-1] + b[imax-1] * s[imax] ) / a[imax-1];
|
---|
368 | for ( i = imax - 2; i >= 0; i-- )
|
---|
369 | s[i] = - ( s[i] + b[i] * s[i+1] + c[i] * s[imax] ) / a[i];
|
---|
370 |
|
---|
371 | //
|
---|
372 | // Finally, determine the spline coefficients
|
---|
373 | //
|
---|
374 | s[size-1] = s[0];
|
---|
375 | for ( i = 0; i < size - 1; i++ )
|
---|
376 | {
|
---|
377 | a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] );
|
---|
378 | b[i] = 0.5 * s[i];
|
---|
379 | c[i] = ( p[i+1].y() - p[i].y() )
|
---|
380 | / h[i] - ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
|
---|
381 | }
|
---|
382 |
|
---|
383 | return true;
|
---|
384 | }
|
---|