1 | /// \ingroup newmat
|
---|
2 | ///@{
|
---|
3 |
|
---|
4 | /// \file sort.cpp
|
---|
5 | /// Sorting functions.
|
---|
6 |
|
---|
7 | // Copyright (C) 1991,2,3,4: R B Davies
|
---|
8 |
|
---|
9 | #define WANT_MATH
|
---|
10 |
|
---|
11 | #include "include.h"
|
---|
12 |
|
---|
13 | #include "newmatap.h"
|
---|
14 |
|
---|
15 | #ifdef use_namespace
|
---|
16 | namespace NEWMAT {
|
---|
17 | #endif
|
---|
18 |
|
---|
19 | #ifdef DO_REPORT
|
---|
20 | #define REPORT { static ExeCounter ExeCount(__LINE__,13); ++ExeCount; }
|
---|
21 | #else
|
---|
22 | #define REPORT {}
|
---|
23 | #endif
|
---|
24 |
|
---|
25 | /******************************** Quick sort ********************************/
|
---|
26 |
|
---|
27 | // Quicksort.
|
---|
28 | // Essentially the method described in Sedgewick s algorithms in C++
|
---|
29 | // My version is still partially recursive, unlike Segewick s, but the
|
---|
30 | // smallest segment of each split is used in the recursion, so it should
|
---|
31 | // not overlead the stack.
|
---|
32 |
|
---|
33 | // If the process does not seems to be converging an exception is thrown.
|
---|
34 |
|
---|
35 |
|
---|
36 | #define DoSimpleSort 17 // when to switch to insert sort
|
---|
37 | #define MaxDepth 50 // maximum recursion depth
|
---|
38 |
|
---|
39 | static void MyQuickSortDescending(Real* first, Real* last, int depth);
|
---|
40 | static void InsertionSortDescending(Real* first, const int length,
|
---|
41 | int guard);
|
---|
42 | static Real SortThreeDescending(Real* a, Real* b, Real* c);
|
---|
43 |
|
---|
44 | static void MyQuickSortAscending(Real* first, Real* last, int depth);
|
---|
45 | static void InsertionSortAscending(Real* first, const int length,
|
---|
46 | int guard);
|
---|
47 |
|
---|
48 |
|
---|
49 | void sort_descending(GeneralMatrix& GM)
|
---|
50 | {
|
---|
51 | REPORT
|
---|
52 | Tracer et("sort_descending");
|
---|
53 |
|
---|
54 | Real* data = GM.Store(); int max = GM.Storage();
|
---|
55 |
|
---|
56 | if (max > DoSimpleSort) MyQuickSortDescending(data, data + max - 1, 0);
|
---|
57 | InsertionSortDescending(data, max, DoSimpleSort);
|
---|
58 |
|
---|
59 | }
|
---|
60 |
|
---|
61 | static Real SortThreeDescending(Real* a, Real* b, Real* c)
|
---|
62 | {
|
---|
63 | // sort *a, *b, *c; return *b; optimise for already sorted
|
---|
64 | if (*a >= *b)
|
---|
65 | {
|
---|
66 | if (*b >= *c) { REPORT return *b; }
|
---|
67 | else if (*a >= *c) { REPORT Real x = *c; *c = *b; *b = x; return x; }
|
---|
68 | else { REPORT Real x = *a; *a = *c; *c = *b; *b = x; return x; }
|
---|
69 | }
|
---|
70 | else if (*c >= *b) { REPORT Real x = *c; *c = *a; *a = x; return *b; }
|
---|
71 | else if (*a >= *c) { REPORT Real x = *a; *a = *b; *b = x; return x; }
|
---|
72 | else { REPORT Real x = *c; *c = *a; *a = *b; *b = x; return x; }
|
---|
73 | }
|
---|
74 |
|
---|
75 | static void InsertionSortDescending(Real* first, const int length,
|
---|
76 | int guard)
|
---|
77 | // guard gives the length of the sequence to scan to find first
|
---|
78 | // element (eg = length)
|
---|
79 | {
|
---|
80 | REPORT
|
---|
81 | if (length <= 1) return;
|
---|
82 |
|
---|
83 | // scan for first element
|
---|
84 | Real* f = first; Real v = *f; Real* h = f;
|
---|
85 | if (guard > length) { REPORT guard = length; }
|
---|
86 | int i = guard - 1;
|
---|
87 | while (i--) if (v < *(++f)) { v = *f; h = f; }
|
---|
88 | *h = *first; *first = v;
|
---|
89 |
|
---|
90 | // do the sort
|
---|
91 | i = length - 1; f = first;
|
---|
92 | while (i--)
|
---|
93 | {
|
---|
94 | Real* g = f++; h = f; v = *h;
|
---|
95 | while (*g < v) *h-- = *g--;
|
---|
96 | *h = v;
|
---|
97 | }
|
---|
98 | }
|
---|
99 |
|
---|
100 | static void MyQuickSortDescending(Real* first, Real* last, int depth)
|
---|
101 | {
|
---|
102 | REPORT
|
---|
103 | for (;;)
|
---|
104 | {
|
---|
105 | const int length = last - first + 1;
|
---|
106 | if (length < DoSimpleSort) { REPORT return; }
|
---|
107 | if (depth++ > MaxDepth)
|
---|
108 | Throw(ConvergenceException("QuickSortDescending fails: "));
|
---|
109 | Real* centre = first + length/2;
|
---|
110 | const Real test = SortThreeDescending(first, centre, last);
|
---|
111 | Real* f = first; Real* l = last;
|
---|
112 | for (;;)
|
---|
113 | {
|
---|
114 | while (*(++f) > test) {}
|
---|
115 | while (*(--l) < test) {}
|
---|
116 | if (l <= f) break;
|
---|
117 | const Real temp = *f; *f = *l; *l = temp;
|
---|
118 | }
|
---|
119 | if (f > centre)
|
---|
120 | { REPORT MyQuickSortDescending(l+1, last, depth); last = f-1; }
|
---|
121 | else { REPORT MyQuickSortDescending(first, f-1, depth); first = l+1; }
|
---|
122 | }
|
---|
123 | }
|
---|
124 |
|
---|
125 | void sort_ascending(GeneralMatrix& GM)
|
---|
126 | {
|
---|
127 | REPORT
|
---|
128 | Tracer et("sort_ascending");
|
---|
129 |
|
---|
130 | Real* data = GM.Store(); int max = GM.Storage();
|
---|
131 |
|
---|
132 | if (max > DoSimpleSort) MyQuickSortAscending(data, data + max - 1, 0);
|
---|
133 | InsertionSortAscending(data, max, DoSimpleSort);
|
---|
134 |
|
---|
135 | }
|
---|
136 |
|
---|
137 | static void InsertionSortAscending(Real* first, const int length,
|
---|
138 | int guard)
|
---|
139 | // guard gives the length of the sequence to scan to find first
|
---|
140 | // element (eg guard = length)
|
---|
141 | {
|
---|
142 | REPORT
|
---|
143 | if (length <= 1) return;
|
---|
144 |
|
---|
145 | // scan for first element
|
---|
146 | Real* f = first; Real v = *f; Real* h = f;
|
---|
147 | if (guard > length) { REPORT guard = length; }
|
---|
148 | int i = guard - 1;
|
---|
149 | while (i--) if (v > *(++f)) { v = *f; h = f; }
|
---|
150 | *h = *first; *first = v;
|
---|
151 |
|
---|
152 | // do the sort
|
---|
153 | i = length - 1; f = first;
|
---|
154 | while (i--)
|
---|
155 | {
|
---|
156 | Real* g = f++; h = f; v = *h;
|
---|
157 | while (*g > v) *h-- = *g--;
|
---|
158 | *h = v;
|
---|
159 | }
|
---|
160 | }
|
---|
161 | static void MyQuickSortAscending(Real* first, Real* last, int depth)
|
---|
162 | {
|
---|
163 | REPORT
|
---|
164 | for (;;)
|
---|
165 | {
|
---|
166 | const int length = last - first + 1;
|
---|
167 | if (length < DoSimpleSort) { REPORT return; }
|
---|
168 | if (depth++ > MaxDepth)
|
---|
169 | Throw(ConvergenceException("QuickSortAscending fails: "));
|
---|
170 | Real* centre = first + length/2;
|
---|
171 | const Real test = SortThreeDescending(last, centre, first);
|
---|
172 | Real* f = first; Real* l = last;
|
---|
173 | for (;;)
|
---|
174 | {
|
---|
175 | while (*(++f) < test) {}
|
---|
176 | while (*(--l) > test) {}
|
---|
177 | if (l <= f) break;
|
---|
178 | const Real temp = *f; *f = *l; *l = temp;
|
---|
179 | }
|
---|
180 | if (f > centre)
|
---|
181 | { REPORT MyQuickSortAscending(l+1, last, depth); last = f-1; }
|
---|
182 | else { REPORT MyQuickSortAscending(first, f-1, depth); first = l+1; }
|
---|
183 | }
|
---|
184 | }
|
---|
185 |
|
---|
186 | //********* sort diagonal matrix & rearrange matrix columns ****************
|
---|
187 |
|
---|
188 | // used by SVD
|
---|
189 |
|
---|
190 | // these are for sorting singular values - should be updated with faster
|
---|
191 | // sorts that handle exchange of columns better
|
---|
192 | // however time is probably not significant compared with SVD time
|
---|
193 |
|
---|
194 | void SortSV(DiagonalMatrix& D, Matrix& U, bool ascending)
|
---|
195 | {
|
---|
196 | REPORT
|
---|
197 | Tracer trace("SortSV_DU");
|
---|
198 | int m = U.Nrows(); int n = U.Ncols();
|
---|
199 | if (n != D.Nrows()) Throw(IncompatibleDimensionsException(D,U));
|
---|
200 | Real* u = U.Store();
|
---|
201 | for (int i=0; i<n; i++)
|
---|
202 | {
|
---|
203 | int k = i; Real p = D.element(i);
|
---|
204 | if (ascending)
|
---|
205 | {
|
---|
206 | for (int j=i+1; j<n; j++)
|
---|
207 | { if (D.element(j) < p) { k = j; p = D.element(j); } }
|
---|
208 | }
|
---|
209 | else
|
---|
210 | {
|
---|
211 | for (int j=i+1; j<n; j++)
|
---|
212 | { if (D.element(j) > p) { k = j; p = D.element(j); } }
|
---|
213 | }
|
---|
214 | if (k != i)
|
---|
215 | {
|
---|
216 | D.element(k) = D.element(i); D.element(i) = p; int j = m;
|
---|
217 | Real* uji = u + i; Real* ujk = u + k;
|
---|
218 | if (j) for(;;)
|
---|
219 | {
|
---|
220 | p = *uji; *uji = *ujk; *ujk = p;
|
---|
221 | if (!(--j)) break;
|
---|
222 | uji += n; ujk += n;
|
---|
223 | }
|
---|
224 | }
|
---|
225 | }
|
---|
226 | }
|
---|
227 |
|
---|
228 | void SortSV(DiagonalMatrix& D, Matrix& U, Matrix& V, bool ascending)
|
---|
229 | {
|
---|
230 | REPORT
|
---|
231 | Tracer trace("SortSV_DUV");
|
---|
232 | int mu = U.Nrows(); int mv = V.Nrows(); int n = D.Nrows();
|
---|
233 | if (n != U.Ncols()) Throw(IncompatibleDimensionsException(D,U));
|
---|
234 | if (n != V.Ncols()) Throw(IncompatibleDimensionsException(D,V));
|
---|
235 | Real* u = U.Store(); Real* v = V.Store();
|
---|
236 | for (int i=0; i<n; i++)
|
---|
237 | {
|
---|
238 | int k = i; Real p = D.element(i);
|
---|
239 | if (ascending)
|
---|
240 | {
|
---|
241 | for (int j=i+1; j<n; j++)
|
---|
242 | { if (D.element(j) < p) { k = j; p = D.element(j); } }
|
---|
243 | }
|
---|
244 | else
|
---|
245 | {
|
---|
246 | for (int j=i+1; j<n; j++)
|
---|
247 | { if (D.element(j) > p) { k = j; p = D.element(j); } }
|
---|
248 | }
|
---|
249 | if (k != i)
|
---|
250 | {
|
---|
251 | D.element(k) = D.element(i); D.element(i) = p;
|
---|
252 | Real* uji = u + i; Real* ujk = u + k;
|
---|
253 | Real* vji = v + i; Real* vjk = v + k;
|
---|
254 | int j = mu;
|
---|
255 | if (j) for(;;)
|
---|
256 | {
|
---|
257 | p = *uji; *uji = *ujk; *ujk = p; if (!(--j)) break;
|
---|
258 | uji += n; ujk += n;
|
---|
259 | }
|
---|
260 | j = mv;
|
---|
261 | if (j) for(;;)
|
---|
262 | {
|
---|
263 | p = *vji; *vji = *vjk; *vjk = p; if (!(--j)) break;
|
---|
264 | vji += n; vjk += n;
|
---|
265 | }
|
---|
266 | }
|
---|
267 | }
|
---|
268 | }
|
---|
269 |
|
---|
270 |
|
---|
271 |
|
---|
272 |
|
---|
273 | #ifdef use_namespace
|
---|
274 | }
|
---|
275 | #endif
|
---|
276 |
|
---|
277 | ///@}
|
---|