1 | /// \ingroup newmat
|
---|
2 | ///@{
|
---|
3 |
|
---|
4 | /// \file newmatrm.h
|
---|
5 | /// Rectangular matrix operations.
|
---|
6 |
|
---|
7 | // Copyright (C) 1991,2,3,4: R B Davies
|
---|
8 |
|
---|
9 | #ifndef NEWMATRM_LIB
|
---|
10 | #define NEWMATRM_LIB 0
|
---|
11 |
|
---|
12 | #ifdef use_namespace
|
---|
13 | namespace NEWMAT {
|
---|
14 | #endif
|
---|
15 |
|
---|
16 |
|
---|
17 | class RectMatrixCol;
|
---|
18 |
|
---|
19 | /// Access rows and columns of a rectangular matrix.
|
---|
20 | /// \internal
|
---|
21 | class RectMatrixRowCol
|
---|
22 | {
|
---|
23 | protected:
|
---|
24 | #ifdef use_namespace // to make namespace work
|
---|
25 | public:
|
---|
26 | #endif
|
---|
27 | Real* store; // pointer to storage
|
---|
28 | int n; // number of elements
|
---|
29 | int spacing; // space between elements
|
---|
30 | int shift; // space between cols or rows
|
---|
31 | RectMatrixRowCol(Real* st, int nx, int sp, int sh)
|
---|
32 | : store(st), n(nx), spacing(sp), shift(sh) {}
|
---|
33 | void Reset(Real* st, int nx, int sp, int sh)
|
---|
34 | { store=st; n=nx; spacing=sp; shift=sh; }
|
---|
35 | public:
|
---|
36 | Real operator*(const RectMatrixRowCol&) const; // dot product
|
---|
37 | void AddScaled(const RectMatrixRowCol&, Real); // add scaled
|
---|
38 | void Divide(const RectMatrixRowCol&, Real); // scaling
|
---|
39 | void Divide(Real); // scaling
|
---|
40 | void Negate(); // change sign
|
---|
41 | void Zero(); // zero row col
|
---|
42 | Real& operator[](int i) { return *(store+i*spacing); } // element
|
---|
43 | Real SumSquare() const; // sum of squares
|
---|
44 | Real& First() { return *store; } // get first element
|
---|
45 | void DownDiag() { store += (shift+spacing); n--; }
|
---|
46 | void UpDiag() { store -= (shift+spacing); n++; }
|
---|
47 | friend void ComplexScale(RectMatrixCol&, RectMatrixCol&, Real, Real);
|
---|
48 | friend void Rotate(RectMatrixCol&, RectMatrixCol&, Real, Real);
|
---|
49 | FREE_CHECK(RectMatrixRowCol)
|
---|
50 | };
|
---|
51 |
|
---|
52 | /// Access rows of a rectangular matrix.
|
---|
53 | /// \internal
|
---|
54 | class RectMatrixRow : public RectMatrixRowCol
|
---|
55 | {
|
---|
56 | public:
|
---|
57 | RectMatrixRow(const Matrix&, int, int, int);
|
---|
58 | RectMatrixRow(const Matrix&, int);
|
---|
59 | void Reset(const Matrix&, int, int, int);
|
---|
60 | void Reset(const Matrix&, int);
|
---|
61 | Real& operator[](int i) { return *(store+i); }
|
---|
62 | void Down() { store += shift; }
|
---|
63 | void Right() { store++; n--; }
|
---|
64 | void Up() { store -= shift; }
|
---|
65 | void Left() { store--; n++; }
|
---|
66 | FREE_CHECK(RectMatrixRow)
|
---|
67 | };
|
---|
68 |
|
---|
69 | /// Access columns of a rectangular matrix.
|
---|
70 | /// \internal
|
---|
71 | class RectMatrixCol : public RectMatrixRowCol
|
---|
72 | {
|
---|
73 | public:
|
---|
74 | RectMatrixCol(const Matrix&, int, int, int);
|
---|
75 | RectMatrixCol(const Matrix&, int);
|
---|
76 | void Reset(const Matrix&, int, int, int);
|
---|
77 | void Reset(const Matrix&, int);
|
---|
78 | void Down() { store += spacing; n--; }
|
---|
79 | void Right() { store++; }
|
---|
80 | void Up() { store -= spacing; n++; }
|
---|
81 | void Left() { store--; }
|
---|
82 | friend void ComplexScale(RectMatrixCol&, RectMatrixCol&, Real, Real);
|
---|
83 | friend void Rotate(RectMatrixCol&, RectMatrixCol&, Real, Real);
|
---|
84 | FREE_CHECK(RectMatrixCol)
|
---|
85 | };
|
---|
86 |
|
---|
87 | /// Access diagonal of a rectangular matrix.
|
---|
88 | /// \internal
|
---|
89 | class RectMatrixDiag : public RectMatrixRowCol
|
---|
90 | {
|
---|
91 | public:
|
---|
92 | RectMatrixDiag(const DiagonalMatrix& D)
|
---|
93 | : RectMatrixRowCol(D.Store(), D.Nrows(), 1, 1) {}
|
---|
94 | Real& operator[](int i) { return *(store+i); }
|
---|
95 | void DownDiag() { store++; n--; }
|
---|
96 | void UpDiag() { store--; n++; }
|
---|
97 | FREE_CHECK(RectMatrixDiag)
|
---|
98 | };
|
---|
99 |
|
---|
100 |
|
---|
101 |
|
---|
102 |
|
---|
103 | inline RectMatrixRow::RectMatrixRow
|
---|
104 | (const Matrix& M, int row, int skip, int length)
|
---|
105 | : RectMatrixRowCol( M.Store()+row*M.Ncols()+skip, length, 1, M.Ncols() ) {}
|
---|
106 |
|
---|
107 | inline RectMatrixRow::RectMatrixRow (const Matrix& M, int row)
|
---|
108 | : RectMatrixRowCol( M.Store()+row*M.Ncols(), M.Ncols(), 1, M.Ncols() ) {}
|
---|
109 |
|
---|
110 | inline RectMatrixCol::RectMatrixCol
|
---|
111 | (const Matrix& M, int skip, int col, int length)
|
---|
112 | : RectMatrixRowCol( M.Store()+col+skip*M.Ncols(), length, M.Ncols(), 1 ) {}
|
---|
113 |
|
---|
114 | inline RectMatrixCol::RectMatrixCol (const Matrix& M, int col)
|
---|
115 | : RectMatrixRowCol( M.Store()+col, M.Nrows(), M.Ncols(), 1 ) {}
|
---|
116 |
|
---|
117 | inline Real square(Real x) { return x*x; }
|
---|
118 | inline Real sign(Real x, Real y)
|
---|
119 | { return (y>=0) ? x : -x; } // assume x >=0
|
---|
120 |
|
---|
121 |
|
---|
122 | // Misc numerical things
|
---|
123 |
|
---|
124 | Real pythag(Real f, Real g, Real& c, Real& s);
|
---|
125 |
|
---|
126 | inline void GivensRotation(Real cGivens, Real sGivens, Real& x, Real& y)
|
---|
127 | {
|
---|
128 | // allow for possibility &x = &y
|
---|
129 | Real tmp0 = cGivens * x + sGivens * y;
|
---|
130 | Real tmp1 = -sGivens * x + cGivens * y;
|
---|
131 | x = tmp0; y = tmp1;
|
---|
132 | }
|
---|
133 |
|
---|
134 | inline void GivensRotationR(Real cGivens, Real sGivens, Real& x, Real& y)
|
---|
135 | {
|
---|
136 | // also change sign of y
|
---|
137 | // allow for possibility &x = &y
|
---|
138 | Real tmp0 = cGivens * x + sGivens * y;
|
---|
139 | Real tmp1 = sGivens * x - cGivens * y;
|
---|
140 | x = tmp0; y = tmp1;
|
---|
141 | }
|
---|
142 |
|
---|
143 |
|
---|
144 |
|
---|
145 |
|
---|
146 |
|
---|
147 | #ifdef use_namespace
|
---|
148 | }
|
---|
149 | #endif
|
---|
150 |
|
---|
151 | #endif
|
---|
152 |
|
---|
153 | // body file: newmatrm.cpp
|
---|
154 |
|
---|
155 |
|
---|
156 | ///@}
|
---|