1 | /// \ingroup newmat
|
---|
2 | ///@{
|
---|
3 |
|
---|
4 | /// \file newmatnl.h
|
---|
5 | /// Header file for non-linear optimisation
|
---|
6 |
|
---|
7 | // Copyright (C) 1993,4,5: R B Davies
|
---|
8 |
|
---|
9 | #ifndef NEWMATNL_LIB
|
---|
10 | #define NEWMATNL_LIB 0
|
---|
11 |
|
---|
12 | #include "newmat.h"
|
---|
13 |
|
---|
14 | #ifdef use_namespace
|
---|
15 | namespace NEWMAT {
|
---|
16 | #endif
|
---|
17 |
|
---|
18 |
|
---|
19 |
|
---|
20 | /*
|
---|
21 |
|
---|
22 | This is a beginning of a series of classes for non-linear optimisation.
|
---|
23 |
|
---|
24 | At present there are two classes. FindMaximum2 is the basic optimisation
|
---|
25 | strategy when one is doing an optimisation where one has first
|
---|
26 | derivatives and estimates of the second derivatives. Class
|
---|
27 | NonLinearLeastSquares is derived from FindMaximum2. This provides the
|
---|
28 | functions that calculate function values and derivatives.
|
---|
29 |
|
---|
30 | A third class is now added. This is for doing maximum-likelihood when
|
---|
31 | you have first derviatives and something like the Fisher Information
|
---|
32 | matrix (eg the variance covariance matrix of the first derivatives or
|
---|
33 | minus the second derivatives - this matrix is assumed to be positive
|
---|
34 | definite).
|
---|
35 |
|
---|
36 |
|
---|
37 |
|
---|
38 | class FindMaximum2
|
---|
39 |
|
---|
40 | Suppose T is the ColumnVector of parameters, F(T) the function we want
|
---|
41 | to maximise, D(T) the ColumnVector of derivatives of F with respect to
|
---|
42 | T, and S(T) the matrix of second derivatives.
|
---|
43 |
|
---|
44 | Then the basic iteration is given a value of T, update it to
|
---|
45 |
|
---|
46 | T - S.i() * D
|
---|
47 |
|
---|
48 | where .i() denotes inverse.
|
---|
49 |
|
---|
50 | If F was quadratic this would give exactly the right answer (except it
|
---|
51 | might get a minimum rather than a maximum). Since F is not usually
|
---|
52 | quadratic, the simple procedure would be to recalculate S and D with the
|
---|
53 | new value of T and keep iterating until the process converges. This is
|
---|
54 | known as the method of conjugate gradients.
|
---|
55 |
|
---|
56 | In practice, this method may not converge. FindMaximum2 considers an
|
---|
57 | iteration of the form
|
---|
58 |
|
---|
59 | T - x * S.i() * D
|
---|
60 |
|
---|
61 | where x is a number. It tries x = 1 and uses the values of F and its
|
---|
62 | slope with respect to x at x = 0 and x = 1 to fit a cubic in x. It then
|
---|
63 | choses x to maximise the resulting function. This gives our new value of
|
---|
64 | T. The program checks that the value of F is getting better and carries
|
---|
65 | out a variety of strategies if it is not.
|
---|
66 |
|
---|
67 | The program also has a second strategy. If the successive values of T
|
---|
68 | seem to be lying along a curve - eg we are following along a curved
|
---|
69 | ridge, the program will try to fit this ridge and project along it. This
|
---|
70 | does not work at present and is commented out.
|
---|
71 |
|
---|
72 | FindMaximum2 has three virtual functions which need to be over-ridden by
|
---|
73 | a derived class.
|
---|
74 |
|
---|
75 | void Value(const ColumnVector& T, bool wg, Real& f, bool& oorg);
|
---|
76 |
|
---|
77 | T is the column vector of parameters. The function returns the value of
|
---|
78 | the function to f, but may instead set oorg to true if the parameter
|
---|
79 | values are not valid. If wg is true it may also calculate and store the
|
---|
80 | second derivative information.
|
---|
81 |
|
---|
82 | bool NextPoint(ColumnVector& H, Real& d);
|
---|
83 |
|
---|
84 | Using the value of T provided in the previous call of Value, find the
|
---|
85 | conjugate gradients adjustment to T, that is - S.i() * D. Also return
|
---|
86 |
|
---|
87 | d = D.t() * S.i() * D.
|
---|
88 |
|
---|
89 | NextPoint should return true if it considers that the process has
|
---|
90 | converged (d very small) and false otherwise. The previous call of Value
|
---|
91 | will have set wg to true, so that S will be available.
|
---|
92 |
|
---|
93 | Real LastDerivative(const ColumnVector& H);
|
---|
94 |
|
---|
95 | Return the scalar product of H and the vector of derivatives at the last
|
---|
96 | value of T.
|
---|
97 |
|
---|
98 | The function Fit is the function that calls the iteration.
|
---|
99 |
|
---|
100 | void Fit(ColumnVector&, int);
|
---|
101 |
|
---|
102 | The arguments are the trial parameter values as a ColumnVector and the
|
---|
103 | maximum number of iterations. The program calls a DataException if the
|
---|
104 | initial parameters are not valid and a ConvergenceException if the
|
---|
105 | process fails to converge.
|
---|
106 |
|
---|
107 |
|
---|
108 | class NonLinearLeastSquares
|
---|
109 |
|
---|
110 | This class is derived from FindMaximum2 and carries out a non-linear
|
---|
111 | least squares fit. It uses a QR decomposition to carry out the
|
---|
112 | operations required by FindMaximum2.
|
---|
113 |
|
---|
114 | A prototype class R1_Col_I_D is provided. The user needs to derive a
|
---|
115 | class from this which includes functions the predicted value of each
|
---|
116 | observation its derivatives. An object from this class has to be
|
---|
117 | provided to class NonLinearLeastSquares.
|
---|
118 |
|
---|
119 | Suppose we observe n normal random variables with the same unknown
|
---|
120 | variance and such the i-th one has expected value given by f(i,P)
|
---|
121 | where P is a column vector of unknown parameters and f is a known
|
---|
122 | function. We wish to estimate P.
|
---|
123 |
|
---|
124 | First derive a class from R1_Col_I_D and override Real operator()(int i)
|
---|
125 | to give the value of the function f in terms of i and the ColumnVector
|
---|
126 | para defined in class R1_CoL_I_D. Also override ReturnMatrix
|
---|
127 | Derivatives() to give the derivates of f at para and the value of i
|
---|
128 | used in the preceeding call to operator(). Return the result as a
|
---|
129 | RowVector. Construct an object from this class. Suppose in what follows
|
---|
130 | it is called pred.
|
---|
131 |
|
---|
132 | Now constuct a NonLinearLeastSquaresObject accessing pred and optionally
|
---|
133 | an iteration limit and an accuracy critierion.
|
---|
134 |
|
---|
135 | NonLinearLeastSquares NLLS(pred, 1000, 0.0001);
|
---|
136 |
|
---|
137 | The accuracy critierion should be somewhat less than one and 0.0001 is
|
---|
138 | about the smallest sensible value.
|
---|
139 |
|
---|
140 | Define a ColumnVector P containing a guess at the value of the unknown
|
---|
141 | parameter, and a ColumnVector Y containing the unknown data. Call
|
---|
142 |
|
---|
143 | NLLS.Fit(Y,P);
|
---|
144 |
|
---|
145 | If the process converges, P will contain the estimates of the unknown
|
---|
146 | parameters. If it does not converge an exception will be generated.
|
---|
147 |
|
---|
148 | The following member functions can be called after you have done a fit.
|
---|
149 |
|
---|
150 | Real ResidualVariance() const;
|
---|
151 |
|
---|
152 | The estimate of the variance of the observations.
|
---|
153 |
|
---|
154 | void GetResiduals(ColumnVector& Z) const;
|
---|
155 |
|
---|
156 | The residuals of the individual observations.
|
---|
157 |
|
---|
158 | void GetStandardErrors(ColumnVector&);
|
---|
159 |
|
---|
160 | The standard errors of the observations.
|
---|
161 |
|
---|
162 | void GetCorrelations(SymmetricMatrix&);
|
---|
163 |
|
---|
164 | The correlations of the observations.
|
---|
165 |
|
---|
166 | void GetHatDiagonal(DiagonalMatrix&) const;
|
---|
167 |
|
---|
168 | Forms a diagonal matrix of values between 0 and 1. If the i-th value is
|
---|
169 | larger than, say 0.2, then the i-th data value could have an undue
|
---|
170 | influence on your estimates.
|
---|
171 |
|
---|
172 |
|
---|
173 | */
|
---|
174 |
|
---|
175 | class FindMaximum2
|
---|
176 | {
|
---|
177 | virtual void Value(const ColumnVector&, bool, Real&, bool&) = 0;
|
---|
178 | virtual bool NextPoint(ColumnVector&, Real&) = 0;
|
---|
179 | virtual Real LastDerivative(const ColumnVector&) = 0;
|
---|
180 | public:
|
---|
181 | void Fit(ColumnVector&, int);
|
---|
182 | virtual ~FindMaximum2() {} // to keep gnu happy
|
---|
183 | };
|
---|
184 |
|
---|
185 | class R1_Col_I_D
|
---|
186 | {
|
---|
187 | // The prototype for a Real function of a ColumnVector and an
|
---|
188 | // integer.
|
---|
189 | // You need to derive your function from this one and put in your
|
---|
190 | // function for operator() and Derivatives() at least.
|
---|
191 | // You may also want to set up a constructor to enter in additional
|
---|
192 | // parameter values (that will not vary during the solve).
|
---|
193 |
|
---|
194 | protected:
|
---|
195 | ColumnVector para; // Current x value
|
---|
196 |
|
---|
197 | public:
|
---|
198 | virtual bool IsValid() { return true; }
|
---|
199 | // is the current x value OK
|
---|
200 | virtual Real operator()(int i) = 0; // i-th function value at current para
|
---|
201 | virtual void Set(const ColumnVector& X) { para = X; }
|
---|
202 | // set current para
|
---|
203 | bool IsValid(const ColumnVector& X)
|
---|
204 | { Set(X); return IsValid(); }
|
---|
205 | // set para, check OK
|
---|
206 | Real operator()(int i, const ColumnVector& X)
|
---|
207 | { Set(X); return operator()(i); }
|
---|
208 | // set para, return value
|
---|
209 | virtual ReturnMatrix Derivatives() = 0;
|
---|
210 | // return derivatives as RowVector
|
---|
211 | virtual ~R1_Col_I_D() {} // to keep gnu happy
|
---|
212 | };
|
---|
213 |
|
---|
214 |
|
---|
215 | class NonLinearLeastSquares : public FindMaximum2
|
---|
216 | {
|
---|
217 | // these replace the corresponding functions in FindMaximum2
|
---|
218 | void Value(const ColumnVector&, bool, Real&, bool&);
|
---|
219 | bool NextPoint(ColumnVector&, Real&);
|
---|
220 | Real LastDerivative(const ColumnVector&);
|
---|
221 |
|
---|
222 | Matrix X; // the things we need to do the
|
---|
223 | ColumnVector Y; // QR triangularisation
|
---|
224 | UpperTriangularMatrix U; // see the write-up in newmata.txt
|
---|
225 | ColumnVector M;
|
---|
226 | Real errorvar, criterion;
|
---|
227 | int n_obs, n_param;
|
---|
228 | const ColumnVector* DataPointer;
|
---|
229 | RowVector Derivs;
|
---|
230 | SymmetricMatrix Covariance;
|
---|
231 | DiagonalMatrix SE;
|
---|
232 | R1_Col_I_D& Pred; // Reference to predictor object
|
---|
233 | int Lim; // maximum number of iterations
|
---|
234 |
|
---|
235 | public:
|
---|
236 | NonLinearLeastSquares(R1_Col_I_D& pred, int lim=1000, Real crit=0.0001)
|
---|
237 | : criterion(crit), Pred(pred), Lim(lim) {}
|
---|
238 | void Fit(const ColumnVector&, ColumnVector&);
|
---|
239 | Real ResidualVariance() const { return errorvar; }
|
---|
240 | void GetResiduals(ColumnVector& Z) const { Z = Y; }
|
---|
241 | void GetStandardErrors(ColumnVector&);
|
---|
242 | void GetCorrelations(SymmetricMatrix&);
|
---|
243 | void GetHatDiagonal(DiagonalMatrix&) const;
|
---|
244 |
|
---|
245 | private:
|
---|
246 | void MakeCovariance();
|
---|
247 | };
|
---|
248 |
|
---|
249 |
|
---|
250 | // The next class is the prototype class for calculating the
|
---|
251 | // log-likelihood.
|
---|
252 | // I assume first derivatives are available and something like the
|
---|
253 | // Fisher Information or variance/covariance matrix of the first
|
---|
254 | // derivatives or minus the matrix of second derivatives is
|
---|
255 | // available. This matrix must be positive definite.
|
---|
256 |
|
---|
257 | class LL_D_FI
|
---|
258 | {
|
---|
259 | protected:
|
---|
260 | ColumnVector para; // current parameter values
|
---|
261 | bool wg; // true if FI matrix wanted
|
---|
262 |
|
---|
263 | public:
|
---|
264 | virtual void Set(const ColumnVector& X) { para = X; }
|
---|
265 | // set parameter values
|
---|
266 | virtual void WG(bool wgx) { wg = wgx; }
|
---|
267 | // set wg
|
---|
268 |
|
---|
269 | virtual bool IsValid() { return true; }
|
---|
270 | // return true is para is OK
|
---|
271 | bool IsValid(const ColumnVector& X, bool wgx=true)
|
---|
272 | { Set(X); WG(wgx); return IsValid(); }
|
---|
273 |
|
---|
274 | virtual Real LogLikelihood() = 0; // return the loglikelihhod
|
---|
275 | Real LogLikelihood(const ColumnVector& X, bool wgx=true)
|
---|
276 | { Set(X); WG(wgx); return LogLikelihood(); }
|
---|
277 |
|
---|
278 | virtual ReturnMatrix Derivatives() = 0;
|
---|
279 | // column vector of derivatives
|
---|
280 | virtual ReturnMatrix FI() = 0; // Fisher Information matrix
|
---|
281 | virtual ~LL_D_FI() {} // to keep gnu happy
|
---|
282 | };
|
---|
283 |
|
---|
284 | // This is the class for doing the maximum likelihood estimation
|
---|
285 |
|
---|
286 | class MLE_D_FI : public FindMaximum2
|
---|
287 | {
|
---|
288 | // these replace the corresponding functions in FindMaximum2
|
---|
289 | void Value(const ColumnVector&, bool, Real&, bool&);
|
---|
290 | bool NextPoint(ColumnVector&, Real&);
|
---|
291 | Real LastDerivative(const ColumnVector&);
|
---|
292 |
|
---|
293 | // the things we need for the analysis
|
---|
294 | LL_D_FI& LL; // reference to log-likelihood
|
---|
295 | int Lim; // maximum number of iterations
|
---|
296 | Real Criterion; // convergence criterion
|
---|
297 | ColumnVector Derivs; // for the derivatives
|
---|
298 | LowerTriangularMatrix LT; // Cholesky decomposition of FI
|
---|
299 | SymmetricMatrix Covariance;
|
---|
300 | DiagonalMatrix SE;
|
---|
301 |
|
---|
302 | public:
|
---|
303 | MLE_D_FI(LL_D_FI& ll, int lim=1000, Real criterion=0.0001)
|
---|
304 | : LL(ll), Lim(lim), Criterion(criterion) {}
|
---|
305 | void Fit(ColumnVector& Parameters);
|
---|
306 | void GetStandardErrors(ColumnVector&);
|
---|
307 | void GetCorrelations(SymmetricMatrix&);
|
---|
308 |
|
---|
309 | private:
|
---|
310 | void MakeCovariance();
|
---|
311 | };
|
---|
312 |
|
---|
313 |
|
---|
314 | #ifdef use_namespace
|
---|
315 | }
|
---|
316 | #endif
|
---|
317 |
|
---|
318 |
|
---|
319 |
|
---|
320 | #endif
|
---|
321 |
|
---|
322 | // body file: newmatnl.cpp
|
---|
323 |
|
---|
324 |
|
---|
325 |
|
---|
326 | ///@}
|
---|
327 |
|
---|