1 | /// \ingroup newmat
|
---|
2 | ///@{
|
---|
3 |
|
---|
4 | /// \file newmatap.h
|
---|
5 | /// Definition file for advanced matrix functions.
|
---|
6 |
|
---|
7 | // Copyright (C) 1991,2,3,4,8: R B Davies
|
---|
8 |
|
---|
9 | #ifndef NEWMATAP_LIB
|
---|
10 | #define NEWMATAP_LIB 0
|
---|
11 |
|
---|
12 | #include "newmat.h"
|
---|
13 |
|
---|
14 | #ifdef use_namespace
|
---|
15 | namespace NEWMAT {
|
---|
16 | #endif
|
---|
17 |
|
---|
18 |
|
---|
19 | // ************************** applications *****************************/
|
---|
20 |
|
---|
21 |
|
---|
22 | void QRZT(Matrix&, LowerTriangularMatrix&);
|
---|
23 |
|
---|
24 | void QRZT(const Matrix&, Matrix&, Matrix&);
|
---|
25 |
|
---|
26 | void QRZ(Matrix&, UpperTriangularMatrix&);
|
---|
27 |
|
---|
28 | void QRZ(const Matrix&, Matrix&, Matrix&);
|
---|
29 |
|
---|
30 | inline void QRZT(Matrix& X, Matrix& Y, LowerTriangularMatrix& L, Matrix& M)
|
---|
31 | { QRZT(X, L); QRZT(X, Y, M); }
|
---|
32 |
|
---|
33 | inline void QRZ(Matrix& X, Matrix& Y, UpperTriangularMatrix& U, Matrix& M)
|
---|
34 | { QRZ(X, U); QRZ(X, Y, M); }
|
---|
35 |
|
---|
36 | inline void HHDecompose(Matrix& X, LowerTriangularMatrix& L)
|
---|
37 | { QRZT(X,L); }
|
---|
38 |
|
---|
39 | inline void HHDecompose(const Matrix& X, Matrix& Y, Matrix& M)
|
---|
40 | { QRZT(X, Y, M); }
|
---|
41 |
|
---|
42 | void updateQRZT(Matrix& X, LowerTriangularMatrix& L);
|
---|
43 |
|
---|
44 | void updateQRZ(Matrix& X, UpperTriangularMatrix& U);
|
---|
45 |
|
---|
46 | void updateQRZ(const Matrix& X, Matrix& MX, Matrix& MU);
|
---|
47 |
|
---|
48 | void updateQRZ(UpperTriangularMatrix& X, UpperTriangularMatrix& U);
|
---|
49 |
|
---|
50 | void updateQRZ(const UpperTriangularMatrix& X, Matrix& MX, Matrix& MU);
|
---|
51 |
|
---|
52 | inline void UpdateQRZT(Matrix& X, LowerTriangularMatrix& L)
|
---|
53 | { updateQRZT(X, L); }
|
---|
54 |
|
---|
55 | inline void UpdateQRZ(Matrix& X, UpperTriangularMatrix& U)
|
---|
56 | { updateQRZ(X, U); }
|
---|
57 |
|
---|
58 | inline void UpdateQRZ(UpperTriangularMatrix& X, UpperTriangularMatrix& U)
|
---|
59 | { updateQRZ(X, U); }
|
---|
60 |
|
---|
61 | inline void UpdateQRZ(const UpperTriangularMatrix& X, Matrix& MX, Matrix& MU)
|
---|
62 | { updateQRZ(X, MX, MU); }
|
---|
63 |
|
---|
64 | inline void UpdateQRZ(const Matrix& X, Matrix& MX, Matrix& MU)
|
---|
65 | { updateQRZ(X, MX, MU); }
|
---|
66 |
|
---|
67 |
|
---|
68 | // Matrix A's first n columns are orthonormal
|
---|
69 | // so A.Columns(1,n).t() * A.Columns(1,n) is the identity matrix.
|
---|
70 | // Fill out the remaining columns of A to make them orthonormal
|
---|
71 | // so A.t() * A is the identity matrix
|
---|
72 | void extend_orthonormal(Matrix& A, int n);
|
---|
73 |
|
---|
74 |
|
---|
75 | ReturnMatrix Cholesky(const SymmetricMatrix&);
|
---|
76 |
|
---|
77 | ReturnMatrix Cholesky(const SymmetricBandMatrix&);
|
---|
78 |
|
---|
79 |
|
---|
80 | // produces the Cholesky decomposition of A + x.t() * x
|
---|
81 | // where A = chol.t() * chol and x is a RowVector
|
---|
82 | void update_Cholesky(UpperTriangularMatrix& chol, RowVector x);
|
---|
83 | inline void UpdateCholesky(UpperTriangularMatrix& chol, const RowVector& x)
|
---|
84 | { update_Cholesky(chol, x); }
|
---|
85 |
|
---|
86 | // produces the Cholesky decomposition of A - x.t() * x
|
---|
87 | // where A = chol.t() * chol and x is a RowVector
|
---|
88 | void downdate_Cholesky(UpperTriangularMatrix &chol, RowVector x);
|
---|
89 | inline void DowndateCholesky(UpperTriangularMatrix &chol, const RowVector& x)
|
---|
90 | { downdate_Cholesky(chol, x); }
|
---|
91 |
|
---|
92 | // a RIGHT circular shift of the rows and columns from
|
---|
93 | // 1,...,k-1,k,k+1,...l,l+1,...,p to
|
---|
94 | // 1,...,k-1,l,k,k+1,...l-1,l+1,...p
|
---|
95 | void right_circular_update_Cholesky(UpperTriangularMatrix &chol, int k, int l);
|
---|
96 | inline void RightCircularUpdateCholesky(UpperTriangularMatrix &chol,
|
---|
97 | int k, int l) { right_circular_update_Cholesky(chol, k, l); }
|
---|
98 |
|
---|
99 | // a LEFT circular shift of the rows and columns from
|
---|
100 | // 1,...,k-1,k,k+1,...l,l+1,...,p to
|
---|
101 | // 1,...,k-1,k+1,...l,k,l+1,...,p to
|
---|
102 | void left_circular_update_Cholesky(UpperTriangularMatrix &chol, int k, int l);
|
---|
103 | inline void LeftCircularUpdateCholesky(UpperTriangularMatrix &chol,
|
---|
104 | int k, int l) { left_circular_update_Cholesky(chol, k, l); }
|
---|
105 |
|
---|
106 |
|
---|
107 | void SVD(const Matrix&, DiagonalMatrix&, Matrix&, Matrix&,
|
---|
108 | bool=true, bool=true);
|
---|
109 |
|
---|
110 | void SVD(const Matrix&, DiagonalMatrix&);
|
---|
111 |
|
---|
112 | inline void SVD(const Matrix& A, DiagonalMatrix& D, Matrix& U,
|
---|
113 | bool withU = true) { SVD(A, D, U, U, withU, false); }
|
---|
114 |
|
---|
115 | void SortSV(DiagonalMatrix& D, Matrix& U, bool ascending = false);
|
---|
116 |
|
---|
117 | void SortSV(DiagonalMatrix& D, Matrix& U, Matrix& V, bool ascending = false);
|
---|
118 |
|
---|
119 | void Jacobi(const SymmetricMatrix&, DiagonalMatrix&);
|
---|
120 |
|
---|
121 | void Jacobi(const SymmetricMatrix&, DiagonalMatrix&, SymmetricMatrix&);
|
---|
122 |
|
---|
123 | void Jacobi(const SymmetricMatrix&, DiagonalMatrix&, Matrix&);
|
---|
124 |
|
---|
125 | void Jacobi(const SymmetricMatrix&, DiagonalMatrix&, SymmetricMatrix&,
|
---|
126 | Matrix&, bool=true);
|
---|
127 |
|
---|
128 | void eigenvalues(const SymmetricMatrix&, DiagonalMatrix&);
|
---|
129 |
|
---|
130 | void eigenvalues(const SymmetricMatrix&, DiagonalMatrix&, SymmetricMatrix&);
|
---|
131 |
|
---|
132 | void eigenvalues(const SymmetricMatrix&, DiagonalMatrix&, Matrix&);
|
---|
133 |
|
---|
134 | inline void EigenValues(const SymmetricMatrix& A, DiagonalMatrix& D)
|
---|
135 | { eigenvalues(A, D); }
|
---|
136 |
|
---|
137 | inline void EigenValues(const SymmetricMatrix& A, DiagonalMatrix& D,
|
---|
138 | SymmetricMatrix& S) { eigenvalues(A, D, S); }
|
---|
139 |
|
---|
140 | inline void EigenValues(const SymmetricMatrix& A, DiagonalMatrix& D, Matrix& V)
|
---|
141 | { eigenvalues(A, D, V); }
|
---|
142 |
|
---|
143 | class SymmetricEigenAnalysis
|
---|
144 | // not implemented yet
|
---|
145 | {
|
---|
146 | public:
|
---|
147 | SymmetricEigenAnalysis(const SymmetricMatrix&);
|
---|
148 | private:
|
---|
149 | DiagonalMatrix diag;
|
---|
150 | DiagonalMatrix offdiag;
|
---|
151 | SymmetricMatrix backtransform;
|
---|
152 | FREE_CHECK(SymmetricEigenAnalysis)
|
---|
153 | };
|
---|
154 |
|
---|
155 | void sort_ascending(GeneralMatrix&);
|
---|
156 |
|
---|
157 | void sort_descending(GeneralMatrix&);
|
---|
158 |
|
---|
159 | inline void SortAscending(GeneralMatrix& gm) { sort_ascending(gm); }
|
---|
160 |
|
---|
161 | inline void SortDescending(GeneralMatrix& gm) { sort_descending(gm); }
|
---|
162 |
|
---|
163 | /// Decide which fft method to use and carry out new fft function
|
---|
164 | class FFT_Controller
|
---|
165 | {
|
---|
166 | public:
|
---|
167 | static bool OnlyOldFFT;
|
---|
168 | static bool ar_1d_ft (int PTS, Real* X, Real *Y);
|
---|
169 | static bool CanFactor(int PTS);
|
---|
170 | };
|
---|
171 |
|
---|
172 | void FFT(const ColumnVector&, const ColumnVector&,
|
---|
173 | ColumnVector&, ColumnVector&);
|
---|
174 |
|
---|
175 | void FFTI(const ColumnVector&, const ColumnVector&,
|
---|
176 | ColumnVector&, ColumnVector&);
|
---|
177 |
|
---|
178 | void RealFFT(const ColumnVector&, ColumnVector&, ColumnVector&);
|
---|
179 |
|
---|
180 | void RealFFTI(const ColumnVector&, const ColumnVector&, ColumnVector&);
|
---|
181 |
|
---|
182 | void DCT_II(const ColumnVector&, ColumnVector&);
|
---|
183 |
|
---|
184 | void DCT_II_inverse(const ColumnVector&, ColumnVector&);
|
---|
185 |
|
---|
186 | void DST_II(const ColumnVector&, ColumnVector&);
|
---|
187 |
|
---|
188 | void DST_II_inverse(const ColumnVector&, ColumnVector&);
|
---|
189 |
|
---|
190 | void DCT(const ColumnVector&, ColumnVector&);
|
---|
191 |
|
---|
192 | void DCT_inverse(const ColumnVector&, ColumnVector&);
|
---|
193 |
|
---|
194 | void DST(const ColumnVector&, ColumnVector&);
|
---|
195 |
|
---|
196 | void DST_inverse(const ColumnVector&, ColumnVector&);
|
---|
197 |
|
---|
198 | void FFT2(const Matrix& U, const Matrix& V, Matrix& X, Matrix& Y);
|
---|
199 |
|
---|
200 | void FFT2I(const Matrix& U, const Matrix& V, Matrix& X, Matrix& Y);
|
---|
201 |
|
---|
202 |
|
---|
203 | // This class is used by the new FFT program
|
---|
204 |
|
---|
205 | // Suppose an integer is expressed as a sequence of digits with each
|
---|
206 | // digit having a different radix.
|
---|
207 | // This class supposes we are counting with this multi-radix number
|
---|
208 | // but also keeps track of the number with the digits (and radices)
|
---|
209 | // reversed.
|
---|
210 | // The integer starts at zero
|
---|
211 | // operator++() increases it by 1
|
---|
212 | // Counter gives the number of increments
|
---|
213 | // Reverse() gives the value with the digits in reverse order
|
---|
214 | // Swap is true if reverse is less than counter
|
---|
215 | // Finish is true when we have done a complete cycle and are back at zero
|
---|
216 |
|
---|
217 | class MultiRadixCounter
|
---|
218 | {
|
---|
219 | const SimpleIntArray& Radix;
|
---|
220 | // radix of each digit
|
---|
221 | // n-1 highest order, 0 lowest order
|
---|
222 | SimpleIntArray& Value; // value of each digit
|
---|
223 | const int n; // number of digits
|
---|
224 | int reverse; // value when order of digits is reversed
|
---|
225 | int product; // product of radices
|
---|
226 | int counter; // counter
|
---|
227 | bool finish; // true when we have gone over whole range
|
---|
228 | public:
|
---|
229 | MultiRadixCounter(int nx, const SimpleIntArray& rx,
|
---|
230 | SimpleIntArray& vx);
|
---|
231 | void operator++(); // increment the multi-radix counter
|
---|
232 | bool Swap() const { return reverse < counter; }
|
---|
233 | bool Finish() const { return finish; }
|
---|
234 | int Reverse() const { return reverse; }
|
---|
235 | int Counter() const { return counter; }
|
---|
236 | };
|
---|
237 |
|
---|
238 | // multiplication by Helmert matrix
|
---|
239 | ReturnMatrix Helmert(int n, bool full=false);
|
---|
240 | ReturnMatrix Helmert(const ColumnVector& X, bool full=false);
|
---|
241 | ReturnMatrix Helmert(int n, int j, bool full=false);
|
---|
242 | ReturnMatrix Helmert_transpose(const ColumnVector& Y, bool full=false);
|
---|
243 | Real Helmert_transpose(const ColumnVector& Y, int j, bool full=false);
|
---|
244 | ReturnMatrix Helmert(const Matrix& X, bool full=false);
|
---|
245 | ReturnMatrix Helmert_transpose(const Matrix& Y, bool full=false);
|
---|
246 |
|
---|
247 |
|
---|
248 |
|
---|
249 |
|
---|
250 | #ifdef use_namespace
|
---|
251 | }
|
---|
252 | #endif
|
---|
253 |
|
---|
254 |
|
---|
255 |
|
---|
256 | #endif
|
---|
257 |
|
---|
258 | // body file: cholesky.cpp
|
---|
259 | // body file: evalue.cpp
|
---|
260 | // body file: fft.cpp
|
---|
261 | // body file: hholder.cpp
|
---|
262 | // body file: jacobi.cpp
|
---|
263 | // body file: newfft.cpp
|
---|
264 | // body file: sort.cpp
|
---|
265 | // body file: svd.cpp
|
---|
266 | // body file: nm_misc.cpp
|
---|
267 |
|
---|
268 |
|
---|
269 |
|
---|
270 | ///@}
|
---|
271 |
|
---|
272 |
|
---|