| 1 | /// \ingroup newmat | 
|---|
| 2 | ///@{ | 
|---|
| 3 |  | 
|---|
| 4 | /// \file hholder.cpp | 
|---|
| 5 | /// QR related decompositions | 
|---|
| 6 | /// QRZ, QRZT decompositions | 
|---|
| 7 | /// QR update and extend orthogonal functions | 
|---|
| 8 |  | 
|---|
| 9 | // Copyright (C) 1991,2,3,4: R B Davies | 
|---|
| 10 |  | 
|---|
| 11 | #define WANT_MATH | 
|---|
| 12 | //#define WANT_STREAM | 
|---|
| 13 |  | 
|---|
| 14 | #include "include.h" | 
|---|
| 15 |  | 
|---|
| 16 | #include "newmatap.h" | 
|---|
| 17 |  | 
|---|
| 18 | #ifdef use_namespace | 
|---|
| 19 | namespace NEWMAT { | 
|---|
| 20 | #endif | 
|---|
| 21 |  | 
|---|
| 22 | #ifdef DO_REPORT | 
|---|
| 23 | #define REPORT { static ExeCounter ExeCount(__LINE__,16); ++ExeCount; } | 
|---|
| 24 | #else | 
|---|
| 25 | #define REPORT {} | 
|---|
| 26 | #endif | 
|---|
| 27 |  | 
|---|
| 28 |  | 
|---|
| 29 | /*************************** QR decompositions ***************************/ | 
|---|
| 30 |  | 
|---|
| 31 | inline Real square(Real x) { return x*x; } | 
|---|
| 32 |  | 
|---|
| 33 | void QRZT(Matrix& X, LowerTriangularMatrix& L) | 
|---|
| 34 | { | 
|---|
| 35 | REPORT | 
|---|
| 36 | Tracer et("QRZT(1)"); | 
|---|
| 37 | int n = X.Ncols(); int s = X.Nrows(); L.resize(s); | 
|---|
| 38 | if (n == 0 || s == 0) { L = 0.0; return; } | 
|---|
| 39 | Real* xi = X.Store(); int k; | 
|---|
| 40 | for (int i=0; i<s; i++) | 
|---|
| 41 | { | 
|---|
| 42 | Real sum = 0.0; | 
|---|
| 43 | Real* xi0=xi; k=n; while(k--) { sum += square(*xi++); } | 
|---|
| 44 | sum = sqrt(sum); | 
|---|
| 45 | if (sum == 0.0) | 
|---|
| 46 | { | 
|---|
| 47 | REPORT | 
|---|
| 48 | k=n; while(k--) { *xi0++ = 0.0; } | 
|---|
| 49 | for (int j=i; j<s; j++) L.element(j,i) = 0.0; | 
|---|
| 50 | } | 
|---|
| 51 | else | 
|---|
| 52 | { | 
|---|
| 53 | L.element(i,i) = sum; | 
|---|
| 54 | Real* xj0=xi0; k=n; while(k--) { *xj0++ /= sum; } | 
|---|
| 55 | for (int j=i+1; j<s; j++) | 
|---|
| 56 | { | 
|---|
| 57 | sum=0.0; | 
|---|
| 58 | xi=xi0; Real* xj=xj0; k=n; while(k--) { sum += *xi++ * *xj++; } | 
|---|
| 59 | xi=xi0; k=n; while(k--) { *xj0++ -= sum * *xi++; } | 
|---|
| 60 | L.element(j,i) = sum; | 
|---|
| 61 | } | 
|---|
| 62 | } | 
|---|
| 63 | } | 
|---|
| 64 | } | 
|---|
| 65 |  | 
|---|
| 66 | void QRZT(const Matrix& X, Matrix& Y, Matrix& M) | 
|---|
| 67 | { | 
|---|
| 68 | REPORT | 
|---|
| 69 | Tracer et("QRZT(2)"); | 
|---|
| 70 | int n = X.Ncols(); int s = X.Nrows(); int t = Y.Nrows(); | 
|---|
| 71 | if (Y.Ncols() != n) | 
|---|
| 72 | { Throw(ProgramException("Unequal row lengths",X,Y)); } | 
|---|
| 73 | M.resize(t,s); | 
|---|
| 74 | Real* xi = X.Store(); int k; | 
|---|
| 75 | for (int i=0; i<s; i++) | 
|---|
| 76 | { | 
|---|
| 77 | Real* xj0 = Y.Store(); Real* xi0 = xi; | 
|---|
| 78 | for (int j=0; j<t; j++) | 
|---|
| 79 | { | 
|---|
| 80 | Real sum=0.0; | 
|---|
| 81 | xi=xi0; Real* xj=xj0; k=n; while(k--) { sum += *xi++ * *xj++; } | 
|---|
| 82 | xi=xi0; k=n; while(k--) { *xj0++ -= sum * *xi++; } | 
|---|
| 83 | M.element(j,i) = sum; | 
|---|
| 84 | } | 
|---|
| 85 | } | 
|---|
| 86 | } | 
|---|
| 87 |  | 
|---|
| 88 | /* | 
|---|
| 89 | void QRZ(Matrix& X, UpperTriangularMatrix& U) | 
|---|
| 90 | { | 
|---|
| 91 | Tracer et("QRZ(1)"); | 
|---|
| 92 | int n = X.Nrows(); int s = X.Ncols(); U.resize(s); | 
|---|
| 93 | Real* xi0 = X.Store(); int k; | 
|---|
| 94 | for (int i=0; i<s; i++) | 
|---|
| 95 | { | 
|---|
| 96 | Real sum = 0.0; | 
|---|
| 97 | Real* xi = xi0; k=n; while(k--) { sum += square(*xi); xi+=s; } | 
|---|
| 98 | sum = sqrt(sum); | 
|---|
| 99 | U.element(i,i) = sum; | 
|---|
| 100 | if (sum==0.0) Throw(SingularException(U)); | 
|---|
| 101 | Real* xj0=xi0; k=n; while(k--) { *xj0 /= sum; xj0+=s; } | 
|---|
| 102 | xj0 = xi0; | 
|---|
| 103 | for (int j=i+1; j<s; j++) | 
|---|
| 104 | { | 
|---|
| 105 | sum=0.0; | 
|---|
| 106 | xi=xi0; k=n; xj0++; Real* xj=xj0; | 
|---|
| 107 | while(k--) { sum += *xi * *xj; xi+=s; xj+=s; } | 
|---|
| 108 | xi=xi0; k=n; xj=xj0; | 
|---|
| 109 | while(k--) { *xj -= sum * *xi; xj+=s; xi+=s; } | 
|---|
| 110 | U.element(i,j) = sum; | 
|---|
| 111 | } | 
|---|
| 112 | xi0++; | 
|---|
| 113 | } | 
|---|
| 114 | } | 
|---|
| 115 | */ | 
|---|
| 116 |  | 
|---|
| 117 | void QRZ(Matrix& X, UpperTriangularMatrix& U) | 
|---|
| 118 | { | 
|---|
| 119 | REPORT | 
|---|
| 120 | Tracer et("QRZ(1)"); | 
|---|
| 121 | int n = X.Nrows(); int s = X.Ncols(); U.resize(s); U = 0.0; | 
|---|
| 122 | if (n == 0 || s == 0) return; | 
|---|
| 123 | Real* xi0 = X.Store(); Real* u0 = U.Store(); Real* u; | 
|---|
| 124 | int j, k; int J = s; int i = s; | 
|---|
| 125 | while (i--) | 
|---|
| 126 | { | 
|---|
| 127 | Real* xj0 = xi0; Real* xi = xi0; k = n; | 
|---|
| 128 | if (k) for (;;) | 
|---|
| 129 | { | 
|---|
| 130 | u = u0; Real Xi = *xi; Real* xj = xj0; | 
|---|
| 131 | j = J; while(j--) *u++ += Xi * *xj++; | 
|---|
| 132 | if (!(--k)) break; | 
|---|
| 133 | xi += s; xj0 += s; | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | Real sum = sqrt(*u0); *u0 = sum; u = u0+1; | 
|---|
| 137 | if (sum == 0.0) | 
|---|
| 138 | { | 
|---|
| 139 | REPORT | 
|---|
| 140 | j = J - 1; while(j--) *u++ = 0.0; | 
|---|
| 141 |  | 
|---|
| 142 | xj0 = xi0++; k = n; | 
|---|
| 143 | if (k) for (;;) | 
|---|
| 144 | { | 
|---|
| 145 | *xj0 = 0.0; | 
|---|
| 146 | if (!(--k)) break; | 
|---|
| 147 | xj0 += s; | 
|---|
| 148 | } | 
|---|
| 149 | u0 += J--; | 
|---|
| 150 | } | 
|---|
| 151 | else | 
|---|
| 152 | { | 
|---|
| 153 | int J1 = J-1; j = J1; while(j--) *u++ /= sum; | 
|---|
| 154 |  | 
|---|
| 155 | xj0 = xi0; xi = xi0++; k = n; | 
|---|
| 156 | if (k) for (;;) | 
|---|
| 157 | { | 
|---|
| 158 | u = u0+1; Real Xi = *xi; Real* xj = xj0; | 
|---|
| 159 | Xi /= sum; *xj++ = Xi; | 
|---|
| 160 | j = J1; while(j--) *xj++ -= *u++ * Xi; | 
|---|
| 161 | if (!(--k)) break; | 
|---|
| 162 | xi += s; xj0 += s; | 
|---|
| 163 | } | 
|---|
| 164 | u0 += J--; | 
|---|
| 165 | } | 
|---|
| 166 | } | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | void QRZ(const Matrix& X, Matrix& Y, Matrix& M) | 
|---|
| 170 | { | 
|---|
| 171 | REPORT | 
|---|
| 172 | Tracer et("QRZ(2)"); | 
|---|
| 173 | int n = X.Nrows(); int s = X.Ncols(); int t = Y.Ncols(); | 
|---|
| 174 | if (Y.Nrows() != n) | 
|---|
| 175 | { Throw(ProgramException("Unequal column lengths",X,Y)); } | 
|---|
| 176 | M.resize(s,t); M = 0;Real* m0 = M.Store(); Real* m; | 
|---|
| 177 | Real* xi0 = X.Store(); | 
|---|
| 178 | int j, k; int i = s; | 
|---|
| 179 | while (i--) | 
|---|
| 180 | { | 
|---|
| 181 | Real* xj0 = Y.Store(); Real* xi = xi0; k = n; | 
|---|
| 182 | if (k) for (;;) | 
|---|
| 183 | { | 
|---|
| 184 | m = m0; Real Xi = *xi; Real* xj = xj0; | 
|---|
| 185 | j = t; while(j--) *m++ += Xi * *xj++; | 
|---|
| 186 | if (!(--k)) break; | 
|---|
| 187 | xi += s; xj0 += t; | 
|---|
| 188 | } | 
|---|
| 189 |  | 
|---|
| 190 | xj0 = Y.Store(); xi = xi0++; k = n; | 
|---|
| 191 | if (k) for (;;) | 
|---|
| 192 | { | 
|---|
| 193 | m = m0; Real Xi = *xi; Real* xj = xj0; | 
|---|
| 194 | j = t; while(j--) *xj++ -= *m++ * Xi; | 
|---|
| 195 | if (!(--k)) break; | 
|---|
| 196 | xi += s; xj0 += t; | 
|---|
| 197 | } | 
|---|
| 198 | m0 += t; | 
|---|
| 199 | } | 
|---|
| 200 | } | 
|---|
| 201 |  | 
|---|
| 202 | /* | 
|---|
| 203 |  | 
|---|
| 204 | void QRZ(const Matrix& X, Matrix& Y, Matrix& M) | 
|---|
| 205 | { | 
|---|
| 206 | Tracer et("QRZ(2)"); | 
|---|
| 207 | int n = X.Nrows(); int s = X.Ncols(); int t = Y.Ncols(); | 
|---|
| 208 | if (Y.Nrows() != n) | 
|---|
| 209 | { Throw(ProgramException("Unequal column lengths",X,Y)); } | 
|---|
| 210 | M.resize(s,t); | 
|---|
| 211 | Real* xi0 = X.Store(); int k; | 
|---|
| 212 | for (int i=0; i<s; i++) | 
|---|
| 213 | { | 
|---|
| 214 | Real* xj0 = Y.Store(); | 
|---|
| 215 | for (int j=0; j<t; j++) | 
|---|
| 216 | { | 
|---|
| 217 | Real sum=0.0; | 
|---|
| 218 | Real* xi=xi0; Real* xj=xj0; k=n; | 
|---|
| 219 | while(k--) { sum += *xi * *xj; xi+=s; xj+=t; } | 
|---|
| 220 | xi=xi0; k=n; xj=xj0++; | 
|---|
| 221 | while(k--) { *xj -= sum * *xi; xj+=t; xi+=s; } | 
|---|
| 222 | M.element(i,j) = sum; | 
|---|
| 223 | } | 
|---|
| 224 | xi0++; | 
|---|
| 225 | } | 
|---|
| 226 | } | 
|---|
| 227 | */ | 
|---|
| 228 |  | 
|---|
| 229 | void updateQRZT(Matrix& X, LowerTriangularMatrix& L) | 
|---|
| 230 | { | 
|---|
| 231 | REPORT | 
|---|
| 232 | Tracer et("updateQRZT"); | 
|---|
| 233 | int n = X.Ncols(); int s = X.Nrows(); | 
|---|
| 234 | if (s != L.Nrows()) | 
|---|
| 235 | Throw(ProgramException("Incompatible dimensions",X,L)); | 
|---|
| 236 | if (n == 0 || s == 0) return; | 
|---|
| 237 | Real* xi = X.Store(); int k; | 
|---|
| 238 | for (int i=0; i<s; i++) | 
|---|
| 239 | { | 
|---|
| 240 | Real r = L.element(i,i); | 
|---|
| 241 | Real sum = 0.0; | 
|---|
| 242 | Real* xi0=xi; k=n; while(k--) { sum += square(*xi++); } | 
|---|
| 243 | sum = sqrt(sum + square(r)); | 
|---|
| 244 | if (sum == 0.0) | 
|---|
| 245 | { | 
|---|
| 246 | REPORT | 
|---|
| 247 | k=n; while(k--) { *xi0++ = 0.0; } | 
|---|
| 248 | for (int j=i; j<s; j++) L.element(j,i) = 0.0; | 
|---|
| 249 | } | 
|---|
| 250 | else | 
|---|
| 251 | { | 
|---|
| 252 | Real frs = fabs(r) + sum; | 
|---|
| 253 | Real a0 = sqrt(frs / sum); Real alpha = a0 / frs; | 
|---|
| 254 | if (r <= 0) { REPORT L.element(i,i) = sum; alpha = -alpha; } | 
|---|
| 255 | else { REPORT L.element(i,i) = -sum; } | 
|---|
| 256 | Real* xj0=xi0; k=n; while(k--) { *xj0++ *= alpha; } | 
|---|
| 257 | for (int j=i+1; j<s; j++) | 
|---|
| 258 | { | 
|---|
| 259 | sum = 0.0; | 
|---|
| 260 | xi=xi0; Real* xj=xj0; k=n; while(k--) { sum += *xi++ * *xj++; } | 
|---|
| 261 | sum += a0 * L.element(j,i); | 
|---|
| 262 | xi=xi0; k=n; while(k--) { *xj0++ -= sum * *xi++; } | 
|---|
| 263 | L.element(j,i) -= sum * a0; | 
|---|
| 264 | } | 
|---|
| 265 | } | 
|---|
| 266 | } | 
|---|
| 267 | } | 
|---|
| 268 |  | 
|---|
| 269 | void updateQRZ(Matrix& X, UpperTriangularMatrix& U) | 
|---|
| 270 | { | 
|---|
| 271 | REPORT | 
|---|
| 272 | Tracer et("updateQRZ"); | 
|---|
| 273 | int n = X.Nrows(); int s = X.Ncols(); | 
|---|
| 274 | if (s != U.Ncols()) | 
|---|
| 275 | Throw(ProgramException("Incompatible dimensions",X,U)); | 
|---|
| 276 | if (n == 0 || s == 0) return; | 
|---|
| 277 | Real* xi0 = X.Store(); Real* u0 = U.Store(); Real* u; | 
|---|
| 278 | RowVector V(s); Real* v0 = V.Store(); Real* v; V = 0.0; | 
|---|
| 279 | int j, k; int J = s; int i = s; | 
|---|
| 280 | while (i--) | 
|---|
| 281 | { | 
|---|
| 282 | Real* xj0 = xi0; Real* xi = xi0; k = n; | 
|---|
| 283 | if (k) for (;;) | 
|---|
| 284 | { | 
|---|
| 285 | v = v0; Real Xi = *xi; Real* xj = xj0; | 
|---|
| 286 | j = J; while(j--) *v++ += Xi * *xj++; | 
|---|
| 287 | if (!(--k)) break; | 
|---|
| 288 | xi += s; xj0 += s; | 
|---|
| 289 | } | 
|---|
| 290 |  | 
|---|
| 291 | Real r = *u0; | 
|---|
| 292 | Real sum = sqrt(*v0 + square(r)); | 
|---|
| 293 |  | 
|---|
| 294 | if (sum == 0.0) | 
|---|
| 295 | { | 
|---|
| 296 | REPORT | 
|---|
| 297 | u = u0; v = v0; | 
|---|
| 298 | j = J; while(j--) { *u++ = 0.0; *v++ = 0.0; } | 
|---|
| 299 | xj0 = xi0++; k = n; | 
|---|
| 300 | if (k) for (;;) | 
|---|
| 301 | { | 
|---|
| 302 | *xj0 = 0.0; | 
|---|
| 303 | if (!(--k)) break; | 
|---|
| 304 | xj0 += s; | 
|---|
| 305 | } | 
|---|
| 306 | u0 += J--; | 
|---|
| 307 | } | 
|---|
| 308 | else | 
|---|
| 309 | { | 
|---|
| 310 | Real frs = fabs(r) + sum; | 
|---|
| 311 | Real a0 = sqrt(frs / sum); Real alpha = a0 / frs; | 
|---|
| 312 | if (r <= 0) { REPORT alpha = -alpha; *u0 = sum; } | 
|---|
| 313 | else { REPORT *u0 = -sum; } | 
|---|
| 314 |  | 
|---|
| 315 | j = J - 1; v = v0 + 1; u = u0 + 1; | 
|---|
| 316 | while (j--) | 
|---|
| 317 | { *v = a0 * *u + alpha * *v; *u -= a0 * *v; ++v; ++u; } | 
|---|
| 318 |  | 
|---|
| 319 | xj0 = xi0; xi = xi0++; k = n; | 
|---|
| 320 | if (k) for (;;) | 
|---|
| 321 | { | 
|---|
| 322 | v = v0 + 1; Real Xi = *xi; Real* xj = xj0; | 
|---|
| 323 | Xi *= alpha; *xj++ = Xi; | 
|---|
| 324 | j = J - 1; while(j--) *xj++ -= *v++ * Xi; | 
|---|
| 325 | if (!(--k)) break; | 
|---|
| 326 | xi += s; xj0 += s; | 
|---|
| 327 | } | 
|---|
| 328 |  | 
|---|
| 329 | j = J; v = v0; | 
|---|
| 330 | while (j--) *v++ = 0.0; | 
|---|
| 331 |  | 
|---|
| 332 | u0 += J--; | 
|---|
| 333 | } | 
|---|
| 334 | } | 
|---|
| 335 | } | 
|---|
| 336 |  | 
|---|
| 337 | // Matrix A's first n columns are orthonormal | 
|---|
| 338 | // so A.Columns(1,n).t() * A.Columns(1,n) is the identity matrix. | 
|---|
| 339 | // Fill out the remaining columns of A to make them orthonormal | 
|---|
| 340 | // so A.t() * A is the identity matrix | 
|---|
| 341 | void extend_orthonormal(Matrix& A, int n) | 
|---|
| 342 | { | 
|---|
| 343 | REPORT | 
|---|
| 344 | Tracer et("extend_orthonormal"); | 
|---|
| 345 | int nr = A.nrows(); int nc = A.ncols(); | 
|---|
| 346 | if (nc > nr) Throw(IncompatibleDimensionsException(A)); | 
|---|
| 347 | if (n > nc) Throw(IncompatibleDimensionsException(A)); | 
|---|
| 348 | ColumnVector SSR; | 
|---|
| 349 | { Matrix A1 = A.Columns(1,n); SSR = A1.sum_square_rows(); } | 
|---|
| 350 | for (int i = n; i < nc; ++i) | 
|---|
| 351 | { | 
|---|
| 352 | // pick row with smallest SSQ | 
|---|
| 353 | int k; SSR.minimum1(k); | 
|---|
| 354 | // orthogonalise column with 1 at element k, 0 elsewhere | 
|---|
| 355 | // next line is rather inefficient | 
|---|
| 356 | ColumnVector X = - A.Columns(1, i) * A.SubMatrix(k, k, 1, i).t(); | 
|---|
| 357 | X(k) += 1.0; | 
|---|
| 358 | // normalise | 
|---|
| 359 | X /= sqrt(X.SumSquare()); | 
|---|
| 360 | // update row sums of squares | 
|---|
| 361 | for (k = 1; k <= nr; ++k) SSR(k) += square(X(k)); | 
|---|
| 362 | // load new column into matrix | 
|---|
| 363 | A.Column(i+1) = X; | 
|---|
| 364 | } | 
|---|
| 365 | } | 
|---|
| 366 |  | 
|---|
| 367 |  | 
|---|
| 368 |  | 
|---|
| 369 |  | 
|---|
| 370 |  | 
|---|
| 371 | #ifdef use_namespace | 
|---|
| 372 | } | 
|---|
| 373 | #endif | 
|---|
| 374 |  | 
|---|
| 375 |  | 
|---|
| 376 | ///@} | 
|---|