[8901] | 1 | /// \ingroup newmat
|
---|
| 2 | ///@{
|
---|
| 3 |
|
---|
| 4 | /// \file evalue.cpp
|
---|
| 5 | /// Eigen-value decomposition (Householder method).
|
---|
| 6 |
|
---|
| 7 | // Copyright (C) 1991,2,3,4: R B Davies
|
---|
| 8 |
|
---|
| 9 | #define WANT_MATH
|
---|
| 10 |
|
---|
| 11 | #include "include.h"
|
---|
| 12 | #include "newmatap.h"
|
---|
| 13 | #include "newmatrm.h"
|
---|
| 14 | #include "precisio.h"
|
---|
| 15 |
|
---|
| 16 | #ifdef use_namespace
|
---|
| 17 | namespace NEWMAT {
|
---|
| 18 | #endif
|
---|
| 19 |
|
---|
| 20 | #ifdef DO_REPORT
|
---|
| 21 | #define REPORT { static ExeCounter ExeCount(__LINE__,17); ++ExeCount; }
|
---|
| 22 | #else
|
---|
| 23 | #define REPORT {}
|
---|
| 24 | #endif
|
---|
| 25 |
|
---|
| 26 |
|
---|
| 27 |
|
---|
| 28 | static void tred2(const SymmetricMatrix& A, DiagonalMatrix& D,
|
---|
| 29 | DiagonalMatrix& E, Matrix& Z)
|
---|
| 30 | {
|
---|
| 31 | Tracer et("Evalue(tred2)");
|
---|
| 32 | REPORT
|
---|
| 33 | Real tol =
|
---|
| 34 | FloatingPointPrecision::Minimum()/FloatingPointPrecision::Epsilon();
|
---|
| 35 | int n = A.Nrows(); Z.resize(n,n); Z.Inject(A);
|
---|
| 36 | D.resize(n); E.resize(n);
|
---|
| 37 | Real* z = Z.Store(); int i;
|
---|
| 38 |
|
---|
| 39 | for (i=n-1; i > 0; i--) // i=0 is excluded
|
---|
| 40 | {
|
---|
| 41 | Real f = Z.element(i,i-1); Real g = 0.0;
|
---|
| 42 | int k = i-1; Real* zik = z + i*n;
|
---|
| 43 | while (k--) g += square(*zik++);
|
---|
| 44 | Real h = g + square(f);
|
---|
| 45 | if (g <= tol) { REPORT E.element(i) = f; h = 0.0; }
|
---|
| 46 | else
|
---|
| 47 | {
|
---|
| 48 | REPORT
|
---|
| 49 | g = sign(-sqrt(h), f); E.element(i) = g; h -= f*g;
|
---|
| 50 | Z.element(i,i-1) = f-g; f = 0.0;
|
---|
| 51 | Real* zji = z + i; Real* zij = z + i*n; Real* ej = E.Store();
|
---|
| 52 | int j;
|
---|
| 53 | for (j=0; j<i; j++)
|
---|
| 54 | {
|
---|
| 55 | *zji = (*zij++)/h; g = 0.0;
|
---|
| 56 | Real* zjk = z + j*n; zik = z + i*n;
|
---|
| 57 | k = j; while (k--) g += *zjk++ * (*zik++);
|
---|
| 58 | k = i-j;
|
---|
| 59 | if (k) for(;;)
|
---|
| 60 | { g += *zjk * (*zik++); if (!(--k)) break; zjk += n; }
|
---|
| 61 | *ej++ = g/h; f += g * (*zji); zji += n;
|
---|
| 62 | }
|
---|
| 63 | Real hh = f / (h + h); zij = z + i*n; ej = E.Store();
|
---|
| 64 | for (j=0; j<i; j++)
|
---|
| 65 | {
|
---|
| 66 | f = *zij++; g = *ej - hh * f; *ej++ = g;
|
---|
| 67 | Real* zjk = z + j*n; Real* zik = z + i*n;
|
---|
| 68 | Real* ek = E.Store(); k = j+1;
|
---|
| 69 | while (k--) *zjk++ -= ( f*(*ek++) + g*(*zik++) );
|
---|
| 70 | }
|
---|
| 71 | }
|
---|
| 72 | D.element(i) = h;
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | D.element(0) = 0.0; E.element(0) = 0.0;
|
---|
| 76 | for (i=0; i<n; i++)
|
---|
| 77 | {
|
---|
| 78 | if (D.element(i) != 0.0)
|
---|
| 79 | {
|
---|
| 80 | REPORT
|
---|
| 81 | for (int j=0; j<i; j++)
|
---|
| 82 | {
|
---|
| 83 | Real g = 0.0;
|
---|
| 84 | Real* zik = z + i*n; Real* zkj = z + j;
|
---|
| 85 | int k = i;
|
---|
| 86 | if (k) for (;;)
|
---|
| 87 | { g += *zik++ * (*zkj); if (!(--k)) break; zkj += n; }
|
---|
| 88 | Real* zki = z + i; zkj = z + j;
|
---|
| 89 | k = i;
|
---|
| 90 | if (k) for (;;)
|
---|
| 91 | { *zkj -= g * (*zki); if (!(--k)) break; zkj += n; zki += n; }
|
---|
| 92 | }
|
---|
| 93 | }
|
---|
| 94 | Real* zij = z + i*n; Real* zji = z + i;
|
---|
| 95 | int j = i;
|
---|
| 96 | if (j) for (;;)
|
---|
| 97 | { *zij++ = 0.0; *zji = 0.0; if (!(--j)) break; zji += n; }
|
---|
| 98 | D.element(i) = *zij; *zij = 1.0;
|
---|
| 99 | }
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | static void tql2(DiagonalMatrix& D, DiagonalMatrix& E, Matrix& Z)
|
---|
| 103 | {
|
---|
| 104 | Tracer et("Evalue(tql2)");
|
---|
| 105 | REPORT
|
---|
| 106 | Real eps = FloatingPointPrecision::Epsilon();
|
---|
| 107 | int n = D.Nrows(); Real* z = Z.Store(); int l;
|
---|
| 108 | for (l=1; l<n; l++) E.element(l-1) = E.element(l);
|
---|
| 109 | Real b = 0.0; Real f = 0.0; E.element(n-1) = 0.0;
|
---|
| 110 | for (l=0; l<n; l++)
|
---|
| 111 | {
|
---|
| 112 | int i,j;
|
---|
| 113 | Real& dl = D.element(l); Real& el = E.element(l);
|
---|
| 114 | Real h = eps * ( fabs(dl) + fabs(el) );
|
---|
| 115 | if (b < h) { REPORT b = h; }
|
---|
| 116 | int m;
|
---|
| 117 | for (m=l; m<n; m++) if (fabs(E.element(m)) <= b) break;
|
---|
| 118 | bool test = false;
|
---|
| 119 | for (j=0; j<30; j++)
|
---|
| 120 | {
|
---|
| 121 | if (m==l) { REPORT test = true; break; }
|
---|
| 122 | Real& dl1 = D.element(l+1);
|
---|
| 123 | Real g = dl; Real p = (dl1-g) / (2.0*el); Real r = sqrt(p*p + 1.0);
|
---|
| 124 | dl = el / (p < 0.0 ? p-r : p+r); Real h = g - dl; f += h;
|
---|
| 125 | Real* dlx = &dl1; i = n-l-1; while (i--) *dlx++ -= h;
|
---|
| 126 |
|
---|
| 127 | p = D.element(m); Real c = 1.0; Real s = 0.0;
|
---|
| 128 | for (i=m-1; i>=l; i--)
|
---|
| 129 | {
|
---|
| 130 | Real ei = E.element(i); Real di = D.element(i);
|
---|
| 131 | Real& ei1 = E.element(i+1);
|
---|
| 132 | g = c * ei; h = c * p;
|
---|
| 133 | if ( fabs(p) >= fabs(ei))
|
---|
| 134 | {
|
---|
| 135 | REPORT
|
---|
| 136 | c = ei / p; r = sqrt(c*c + 1.0);
|
---|
| 137 | ei1 = s*p*r; s = c/r; c = 1.0/r;
|
---|
| 138 | }
|
---|
| 139 | else
|
---|
| 140 | {
|
---|
| 141 | REPORT
|
---|
| 142 | c = p / ei; r = sqrt(c*c + 1.0);
|
---|
| 143 | ei1 = s * ei * r; s = 1.0/r; c /= r;
|
---|
| 144 | }
|
---|
| 145 | p = c * di - s*g; D.element(i+1) = h + s * (c*g + s*di);
|
---|
| 146 |
|
---|
| 147 | Real* zki = z + i; Real* zki1 = zki + 1; int k = n;
|
---|
| 148 | if (k) for (;;)
|
---|
| 149 | {
|
---|
| 150 | REPORT
|
---|
| 151 | h = *zki1; *zki1 = s*(*zki) + c*h; *zki = c*(*zki) - s*h;
|
---|
| 152 | if (!(--k)) break;
|
---|
| 153 | zki += n; zki1 += n;
|
---|
| 154 | }
|
---|
| 155 | }
|
---|
| 156 | el = s*p; dl = c*p;
|
---|
| 157 | if (fabs(el) <= b) { REPORT; test = true; break; }
|
---|
| 158 | }
|
---|
| 159 | if (!test) Throw ( ConvergenceException(D) );
|
---|
| 160 | dl += f;
|
---|
| 161 | }
|
---|
| 162 | /*
|
---|
| 163 | for (int i=0; i<n; i++)
|
---|
| 164 | {
|
---|
| 165 | int k = i; Real p = D.element(i);
|
---|
| 166 | for (int j=i+1; j<n; j++)
|
---|
| 167 | { if (D.element(j) < p) { k = j; p = D.element(j); } }
|
---|
| 168 | if (k != i)
|
---|
| 169 | {
|
---|
| 170 | D.element(k) = D.element(i); D.element(i) = p; int j = n;
|
---|
| 171 | Real* zji = z + i; Real* zjk = z + k;
|
---|
| 172 | if (j) for(;;)
|
---|
| 173 | {
|
---|
| 174 | p = *zji; *zji = *zjk; *zjk = p;
|
---|
| 175 | if (!(--j)) break;
|
---|
| 176 | zji += n; zjk += n;
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 | }
|
---|
| 180 | */
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | static void tred3(const SymmetricMatrix& X, DiagonalMatrix& D,
|
---|
| 184 | DiagonalMatrix& E, SymmetricMatrix& A)
|
---|
| 185 | {
|
---|
| 186 | Tracer et("Evalue(tred3)");
|
---|
| 187 | REPORT
|
---|
| 188 | Real tol =
|
---|
| 189 | FloatingPointPrecision::Minimum()/FloatingPointPrecision::Epsilon();
|
---|
| 190 | int n = X.Nrows(); A = X; D.resize(n); E.resize(n);
|
---|
| 191 | Real* ei = E.Store() + n;
|
---|
| 192 | for (int i = n-1; i >= 0; i--)
|
---|
| 193 | {
|
---|
| 194 | Real h = 0.0; Real f = - FloatingPointPrecision::Maximum();
|
---|
| 195 | Real* d = D.Store(); Real* a = A.Store() + (i*(i+1))/2; int k = i;
|
---|
| 196 | while (k--) { f = *a++; *d++ = f; h += square(f); }
|
---|
| 197 | if (h <= tol) { REPORT *(--ei) = 0.0; h = 0.0; }
|
---|
| 198 | else
|
---|
| 199 | {
|
---|
| 200 | REPORT
|
---|
| 201 | Real g = sign(-sqrt(h), f); *(--ei) = g; h -= f*g;
|
---|
| 202 | f -= g; *(d-1) = f; *(a-1) = f; f = 0.0;
|
---|
| 203 | Real* dj = D.Store(); Real* ej = E.Store(); int j;
|
---|
| 204 | for (j = 0; j < i; j++)
|
---|
| 205 | {
|
---|
| 206 | Real* dk = D.Store(); Real* ak = A.Store()+(j*(j+1))/2;
|
---|
| 207 | Real g = 0.0; k = j;
|
---|
| 208 | while (k--) g += *ak++ * *dk++;
|
---|
| 209 | k = i-j; int l = j;
|
---|
| 210 | if (k) for (;;) { g += *ak * *dk++; if (!(--k)) break; ak += ++l; }
|
---|
| 211 | g /= h; *ej++ = g; f += g * *dj++;
|
---|
| 212 | }
|
---|
| 213 | Real hh = f / (2 * h); Real* ak = A.Store();
|
---|
| 214 | dj = D.Store(); ej = E.Store();
|
---|
| 215 | for (j = 0; j < i; j++)
|
---|
| 216 | {
|
---|
| 217 | f = *dj++; g = *ej - hh * f; *ej++ = g;
|
---|
| 218 | Real* dk = D.Store(); Real* ek = E.Store(); k = j+1;
|
---|
| 219 | while (k--) { *ak++ -= (f * *ek++ + g * *dk++); }
|
---|
| 220 | }
|
---|
| 221 | }
|
---|
| 222 | *d = *a; *a = h;
|
---|
| 223 | }
|
---|
| 224 | }
|
---|
| 225 |
|
---|
| 226 | static void tql1(DiagonalMatrix& D, DiagonalMatrix& E)
|
---|
| 227 | {
|
---|
| 228 | Tracer et("Evalue(tql1)");
|
---|
| 229 | REPORT
|
---|
| 230 | Real eps = FloatingPointPrecision::Epsilon();
|
---|
| 231 | int n = D.Nrows(); int l;
|
---|
| 232 | for (l=1; l<n; l++) E.element(l-1) = E.element(l);
|
---|
| 233 | Real b = 0.0; Real f = 0.0; E.element(n-1) = 0.0;
|
---|
| 234 | for (l=0; l<n; l++)
|
---|
| 235 | {
|
---|
| 236 | int i,j;
|
---|
| 237 | Real& dl = D.element(l); Real& el = E.element(l);
|
---|
| 238 | Real h = eps * ( fabs(dl) + fabs(el) );
|
---|
| 239 | if (b < h) b = h;
|
---|
| 240 | int m;
|
---|
| 241 | for (m=l; m<n; m++) if (fabs(E.element(m)) <= b) break;
|
---|
| 242 | bool test = false;
|
---|
| 243 | for (j=0; j<30; j++)
|
---|
| 244 | {
|
---|
| 245 | if (m==l) { REPORT test = true; break; }
|
---|
| 246 | Real& dl1 = D.element(l+1);
|
---|
| 247 | Real g = dl; Real p = (dl1-g) / (2.0*el); Real r = sqrt(p*p + 1.0);
|
---|
| 248 | dl = el / (p < 0.0 ? p-r : p+r); Real h = g - dl; f += h;
|
---|
| 249 | Real* dlx = &dl1; i = n-l-1; while (i--) *dlx++ -= h;
|
---|
| 250 |
|
---|
| 251 | p = D.element(m); Real c = 1.0; Real s = 0.0;
|
---|
| 252 | for (i=m-1; i>=l; i--)
|
---|
| 253 | {
|
---|
| 254 | Real ei = E.element(i); Real di = D.element(i);
|
---|
| 255 | Real& ei1 = E.element(i+1);
|
---|
| 256 | g = c * ei; h = c * p;
|
---|
| 257 | if ( fabs(p) >= fabs(ei))
|
---|
| 258 | {
|
---|
| 259 | REPORT
|
---|
| 260 | c = ei / p; r = sqrt(c*c + 1.0);
|
---|
| 261 | ei1 = s*p*r; s = c/r; c = 1.0/r;
|
---|
| 262 | }
|
---|
| 263 | else
|
---|
| 264 | {
|
---|
| 265 | REPORT
|
---|
| 266 | c = p / ei; r = sqrt(c*c + 1.0);
|
---|
| 267 | ei1 = s * ei * r; s = 1.0/r; c /= r;
|
---|
| 268 | }
|
---|
| 269 | p = c * di - s*g; D.element(i+1) = h + s * (c*g + s*di);
|
---|
| 270 | }
|
---|
| 271 | el = s*p; dl = c*p;
|
---|
| 272 | if (fabs(el) <= b) { REPORT test = true; break; }
|
---|
| 273 | }
|
---|
| 274 | if (!test) Throw ( ConvergenceException(D) );
|
---|
| 275 | Real p = dl + f;
|
---|
| 276 | test = false;
|
---|
| 277 | for (i=l; i>0; i--)
|
---|
| 278 | {
|
---|
| 279 | if (p < D.element(i-1)) { REPORT D.element(i) = D.element(i-1); }
|
---|
| 280 | else { REPORT test = true; break; }
|
---|
| 281 | }
|
---|
| 282 | if (!test) i=0;
|
---|
| 283 | D.element(i) = p;
|
---|
| 284 | }
|
---|
| 285 | }
|
---|
| 286 |
|
---|
| 287 | void eigenvalues(const SymmetricMatrix& A, DiagonalMatrix& D, Matrix& Z)
|
---|
| 288 | { REPORT DiagonalMatrix E; tred2(A, D, E, Z); tql2(D, E, Z); SortSV(D,Z,true); }
|
---|
| 289 |
|
---|
| 290 | void eigenvalues(const SymmetricMatrix& X, DiagonalMatrix& D)
|
---|
| 291 | { REPORT DiagonalMatrix E; SymmetricMatrix A; tred3(X,D,E,A); tql1(D,E); }
|
---|
| 292 |
|
---|
| 293 | void eigenvalues(const SymmetricMatrix& X, DiagonalMatrix& D,
|
---|
| 294 | SymmetricMatrix& A)
|
---|
| 295 | { REPORT DiagonalMatrix E; tred3(X,D,E,A); tql1(D,E); }
|
---|
| 296 |
|
---|
| 297 |
|
---|
| 298 | #ifdef use_namespace
|
---|
| 299 | }
|
---|
| 300 | #endif
|
---|
| 301 |
|
---|
| 302 | ///@}
|
---|
| 303 |
|
---|