1 | #include <math.h>
|
---|
2 | #include <sstream>
|
---|
3 | #include <iostream>
|
---|
4 | #include <iomanip>
|
---|
5 | #include <cstring>
|
---|
6 |
|
---|
7 | #include <newmatio.h>
|
---|
8 |
|
---|
9 | #include "ephemeris.h"
|
---|
10 | #include "bncutils.h"
|
---|
11 | #include "timeutils.h"
|
---|
12 | #include "bnctime.h"
|
---|
13 |
|
---|
14 | using namespace std;
|
---|
15 |
|
---|
16 | //
|
---|
17 | ////////////////////////////////////////////////////////////////////////////
|
---|
18 | bool t_eph::isNewerThan(const t_eph* eph) const {
|
---|
19 | if (_GPSweek > eph->_GPSweek ||
|
---|
20 | (_GPSweek == eph->_GPSweek && _GPSweeks > eph->_GPSweeks)) {
|
---|
21 | return true;
|
---|
22 | }
|
---|
23 | else {
|
---|
24 | return false;
|
---|
25 | }
|
---|
26 | }
|
---|
27 |
|
---|
28 | // Set GPS Satellite Position
|
---|
29 | ////////////////////////////////////////////////////////////////////////////
|
---|
30 | void t_ephGPS::set(const gpsephemeris* ee) {
|
---|
31 | ostringstream prn;
|
---|
32 | prn << 'G' << setfill('0') << setw(2) << ee->satellite;
|
---|
33 |
|
---|
34 | _prn = prn.str();
|
---|
35 |
|
---|
36 | // TODO: check if following two lines are correct
|
---|
37 | _GPSweek = ee->GPSweek;
|
---|
38 | _GPSweeks = ee->TOE;
|
---|
39 |
|
---|
40 | _TOW = ee->TOW;
|
---|
41 | _TOC = ee->TOC;
|
---|
42 | _TOE = ee->TOE;
|
---|
43 | _IODE = ee->IODE;
|
---|
44 | _IODC = ee->IODC;
|
---|
45 |
|
---|
46 | _clock_bias = ee->clock_bias ;
|
---|
47 | _clock_drift = ee->clock_drift ;
|
---|
48 | _clock_driftrate = ee->clock_driftrate;
|
---|
49 |
|
---|
50 | _Crs = ee->Crs;
|
---|
51 | _Delta_n = ee->Delta_n;
|
---|
52 | _M0 = ee->M0;
|
---|
53 | _Cuc = ee->Cuc;
|
---|
54 | _e = ee->e;
|
---|
55 | _Cus = ee->Cus;
|
---|
56 | _sqrt_A = ee->sqrt_A;
|
---|
57 | _Cic = ee->Cic;
|
---|
58 | _OMEGA0 = ee->OMEGA0;
|
---|
59 | _Cis = ee->Cis;
|
---|
60 | _i0 = ee->i0;
|
---|
61 | _Crc = ee->Crc;
|
---|
62 | _omega = ee->omega;
|
---|
63 | _OMEGADOT = ee->OMEGADOT;
|
---|
64 | _IDOT = ee->IDOT;
|
---|
65 |
|
---|
66 | _TGD = ee->TGD;
|
---|
67 | }
|
---|
68 |
|
---|
69 | // Compute GPS Satellite Position (virtual)
|
---|
70 | ////////////////////////////////////////////////////////////////////////////
|
---|
71 | void t_ephGPS::position(int GPSweek, double GPSweeks,
|
---|
72 | double* xc,
|
---|
73 | double* vv) const {
|
---|
74 |
|
---|
75 | static const double secPerWeek = 7 * 86400.0;
|
---|
76 | static const double omegaEarth = 7292115.1467e-11;
|
---|
77 | static const double gmWGS = 398.6005e12;
|
---|
78 |
|
---|
79 | memset(xc, 0, 4*sizeof(double));
|
---|
80 | memset(vv, 0, 3*sizeof(double));
|
---|
81 |
|
---|
82 | double a0 = _sqrt_A * _sqrt_A;
|
---|
83 | if (a0 == 0) {
|
---|
84 | return;
|
---|
85 | }
|
---|
86 |
|
---|
87 | double n0 = sqrt(gmWGS/(a0*a0*a0));
|
---|
88 | double tk = GPSweeks - _TOE;
|
---|
89 | if (GPSweek != _GPSweek) {
|
---|
90 | tk += (GPSweek - _GPSweek) * secPerWeek;
|
---|
91 | }
|
---|
92 | double n = n0 + _Delta_n;
|
---|
93 | double M = _M0 + n*tk;
|
---|
94 | double E = M;
|
---|
95 | double E_last;
|
---|
96 | do {
|
---|
97 | E_last = E;
|
---|
98 | E = M + _e*sin(E);
|
---|
99 | } while ( fabs(E-E_last)*a0 > 0.001 );
|
---|
100 | double v = 2.0*atan( sqrt( (1.0 + _e)/(1.0 - _e) )*tan( E/2 ) );
|
---|
101 | double u0 = v + _omega;
|
---|
102 | double sin2u0 = sin(2*u0);
|
---|
103 | double cos2u0 = cos(2*u0);
|
---|
104 | double r = a0*(1 - _e*cos(E)) + _Crc*cos2u0 + _Crs*sin2u0;
|
---|
105 | double i = _i0 + _IDOT*tk + _Cic*cos2u0 + _Cis*sin2u0;
|
---|
106 | double u = u0 + _Cuc*cos2u0 + _Cus*sin2u0;
|
---|
107 | double xp = r*cos(u);
|
---|
108 | double yp = r*sin(u);
|
---|
109 | double OM = _OMEGA0 + (_OMEGADOT - omegaEarth)*tk -
|
---|
110 | omegaEarth*_TOE;
|
---|
111 |
|
---|
112 | double sinom = sin(OM);
|
---|
113 | double cosom = cos(OM);
|
---|
114 | double sini = sin(i);
|
---|
115 | double cosi = cos(i);
|
---|
116 | xc[0] = xp*cosom - yp*cosi*sinom;
|
---|
117 | xc[1] = xp*sinom + yp*cosi*cosom;
|
---|
118 | xc[2] = yp*sini;
|
---|
119 |
|
---|
120 | double tc = GPSweeks - _TOC;
|
---|
121 | if (GPSweek != _GPSweek) {
|
---|
122 | tc += (GPSweek - _GPSweek) * secPerWeek;
|
---|
123 | }
|
---|
124 | xc[3] = _clock_bias + _clock_drift*tc + _clock_driftrate*tc*tc;
|
---|
125 |
|
---|
126 | // Velocity
|
---|
127 | // --------
|
---|
128 | double tanv2 = tan(v/2);
|
---|
129 | double dEdM = 1 / (1 - _e*cos(E));
|
---|
130 | double dotv = sqrt((1.0 + _e)/(1.0 - _e)) / cos(E/2)/cos(E/2) / (1 + tanv2*tanv2)
|
---|
131 | * dEdM * n;
|
---|
132 | double dotu = dotv + (-_Cuc*sin2u0 + _Cus*cos2u0)*2*dotv;
|
---|
133 | double dotom = _OMEGADOT - omegaEarth;
|
---|
134 | double doti = _IDOT + (-_Cic*sin2u0 + _Cis*cos2u0)*2*dotv;
|
---|
135 | double dotr = a0 * _e*sin(E) * dEdM * n
|
---|
136 | + (-_Crc*sin2u0 + _Crs*cos2u0)*2*dotv;
|
---|
137 | double dotx = dotr*cos(u) - r*sin(u)*dotu;
|
---|
138 | double doty = dotr*sin(u) + r*cos(u)*dotu;
|
---|
139 |
|
---|
140 | vv[0] = cosom *dotx - cosi*sinom *doty // dX / dr
|
---|
141 | - xp*sinom*dotom - yp*cosi*cosom*dotom // dX / dOMEGA
|
---|
142 | + yp*sini*sinom*doti; // dX / di
|
---|
143 |
|
---|
144 | vv[1] = sinom *dotx + cosi*cosom *doty
|
---|
145 | + xp*cosom*dotom - yp*cosi*sinom*dotom
|
---|
146 | - yp*sini*cosom*doti;
|
---|
147 |
|
---|
148 | vv[2] = sini *doty + yp*cosi *doti;
|
---|
149 |
|
---|
150 | // Relativistic Correction
|
---|
151 | // -----------------------
|
---|
152 | // xc(4) -= 4.442807633e-10 * _e * sqrt(a0) *sin(E);
|
---|
153 | xc[3] -= 2.0 * (xc[0]*vv[0] + xc[1]*vv[1] + xc[2]*vv[2]) / t_CST::c / t_CST::c;
|
---|
154 | }
|
---|
155 |
|
---|
156 |
|
---|
157 | // Derivative of the state vector using a simple force model (static)
|
---|
158 | ////////////////////////////////////////////////////////////////////////////
|
---|
159 | ColumnVector t_ephGlo::glo_deriv(double /* tt */, const ColumnVector& xv,
|
---|
160 | double* acc) {
|
---|
161 |
|
---|
162 | // State vector components
|
---|
163 | // -----------------------
|
---|
164 | ColumnVector rr = xv.rows(1,3);
|
---|
165 | ColumnVector vv = xv.rows(4,6);
|
---|
166 |
|
---|
167 | // Acceleration
|
---|
168 | // ------------
|
---|
169 | static const double GM = 398.60044e12;
|
---|
170 | static const double AE = 6378136.0;
|
---|
171 | static const double OMEGA = 7292115.e-11;
|
---|
172 | static const double C20 = -1082.6257e-6;
|
---|
173 |
|
---|
174 | double rho = rr.norm_Frobenius();
|
---|
175 | double t1 = -GM/(rho*rho*rho);
|
---|
176 | double t2 = 3.0/2.0 * C20 * (GM*AE*AE) / (rho*rho*rho*rho*rho);
|
---|
177 | double t3 = OMEGA * OMEGA;
|
---|
178 | double t4 = 2.0 * OMEGA;
|
---|
179 | double z2 = rr(3) * rr(3);
|
---|
180 |
|
---|
181 | // Vector of derivatives
|
---|
182 | // ---------------------
|
---|
183 | ColumnVector va(6);
|
---|
184 | va(1) = vv(1);
|
---|
185 | va(2) = vv(2);
|
---|
186 | va(3) = vv(3);
|
---|
187 | va(4) = (t1 + t2*(1.0-5.0*z2/(rho*rho)) + t3) * rr(1) + t4*vv(2) + acc[0];
|
---|
188 | va(5) = (t1 + t2*(1.0-5.0*z2/(rho*rho)) + t3) * rr(2) - t4*vv(1) + acc[1];
|
---|
189 | va(6) = (t1 + t2*(3.0-5.0*z2/(rho*rho)) ) * rr(3) + acc[2];
|
---|
190 |
|
---|
191 | return va;
|
---|
192 | }
|
---|
193 |
|
---|
194 | // Compute Glonass Satellite Position (virtual)
|
---|
195 | ////////////////////////////////////////////////////////////////////////////
|
---|
196 | void t_ephGlo::position(int GPSweek, double GPSweeks,
|
---|
197 | double* xc, double* vv) const {
|
---|
198 |
|
---|
199 | static const double secPerWeek = 7 * 86400.0;
|
---|
200 | static const double nominalStep = 10.0;
|
---|
201 |
|
---|
202 | memset(xc, 0, 4*sizeof(double));
|
---|
203 | memset(vv, 0, 3*sizeof(double));
|
---|
204 |
|
---|
205 | double dtPos = GPSweeks - _tt;
|
---|
206 | if (GPSweek != _GPSweek) {
|
---|
207 | dtPos += (GPSweek - _GPSweek) * secPerWeek;
|
---|
208 | }
|
---|
209 |
|
---|
210 | int nSteps = int(fabs(dtPos) / nominalStep) + 1;
|
---|
211 | double step = dtPos / nSteps;
|
---|
212 |
|
---|
213 | double acc[3];
|
---|
214 | acc[0] = _x_acceleration * 1.e3;
|
---|
215 | acc[1] = _y_acceleration * 1.e3;
|
---|
216 | acc[2] = _z_acceleration * 1.e3;
|
---|
217 | for (int ii = 1; ii <= nSteps; ii++) {
|
---|
218 | _xv = rungeKutta4(_tt, _xv, step, acc, glo_deriv);
|
---|
219 | _tt += step;
|
---|
220 | }
|
---|
221 |
|
---|
222 | // Position and Velocity
|
---|
223 | // ---------------------
|
---|
224 | xc[0] = _xv(1);
|
---|
225 | xc[1] = _xv(2);
|
---|
226 | xc[2] = _xv(3);
|
---|
227 |
|
---|
228 | vv[0] = _xv(4);
|
---|
229 | vv[1] = _xv(5);
|
---|
230 | vv[2] = _xv(6);
|
---|
231 |
|
---|
232 | // Clock Correction
|
---|
233 | // ----------------
|
---|
234 | double dtClk = GPSweeks - _GPSweeks;
|
---|
235 | if (GPSweek != _GPSweek) {
|
---|
236 | dtClk += (GPSweek - _GPSweek) * secPerWeek;
|
---|
237 | }
|
---|
238 | xc[3] = -_tau + _gamma * dtClk;
|
---|
239 | }
|
---|
240 |
|
---|
241 | // IOD of Glonass Ephemeris (virtual)
|
---|
242 | ////////////////////////////////////////////////////////////////////////////
|
---|
243 | int t_ephGlo::IOD() const {
|
---|
244 |
|
---|
245 | bool old = false;
|
---|
246 |
|
---|
247 | if (old) { // 5 LSBs of iod are equal to 5 LSBs of tb
|
---|
248 | unsigned int tb = int(fmod(_GPSweeks,86400.0)); //sec of day
|
---|
249 | const int shift = sizeof(tb) * 8 - 5;
|
---|
250 | unsigned int iod = tb << shift;
|
---|
251 | return (iod >> shift);
|
---|
252 | }
|
---|
253 | else {
|
---|
254 | bncTime tGPS(_GPSweek, _GPSweeks);
|
---|
255 | int hlpWeek = _GPSweek;
|
---|
256 | int hlpSec = int(_GPSweeks);
|
---|
257 | int hlpMsec = int(_GPSweeks * 1000);
|
---|
258 | updatetime(&hlpWeek, &hlpSec, hlpMsec, 0);
|
---|
259 | bncTime tHlp(hlpWeek, hlpSec);
|
---|
260 | double diffSec = tGPS - tHlp;
|
---|
261 | bncTime tMoscow = tGPS + diffSec;
|
---|
262 | return int(tMoscow.daysec() / 900);
|
---|
263 | }
|
---|
264 | }
|
---|
265 |
|
---|
266 | // Set Glonass Ephemeris
|
---|
267 | ////////////////////////////////////////////////////////////////////////////
|
---|
268 | void t_ephGlo::set(const glonassephemeris* ee) {
|
---|
269 |
|
---|
270 | ostringstream prn;
|
---|
271 | prn << 'R' << setfill('0') << setw(2) << ee->almanac_number;
|
---|
272 | _prn = prn.str();
|
---|
273 |
|
---|
274 | int ww = ee->GPSWeek;
|
---|
275 | int tow = ee->GPSTOW;
|
---|
276 | updatetime(&ww, &tow, ee->tb*1000, 0); // Moscow -> GPS
|
---|
277 |
|
---|
278 | _GPSweek = ww;
|
---|
279 | _GPSweeks = tow;
|
---|
280 | _E = ee->E;
|
---|
281 | _tau = ee->tau;
|
---|
282 | _gamma = ee->gamma;
|
---|
283 | _x_pos = ee->x_pos;
|
---|
284 | _x_velocity = ee->x_velocity;
|
---|
285 | _x_acceleration = ee->x_acceleration;
|
---|
286 | _y_pos = ee->y_pos;
|
---|
287 | _y_velocity = ee->y_velocity;
|
---|
288 | _y_acceleration = ee->y_acceleration;
|
---|
289 | _z_pos = ee->z_pos;
|
---|
290 | _z_velocity = ee->z_velocity;
|
---|
291 | _z_acceleration = ee->z_acceleration;
|
---|
292 | _health = 0;
|
---|
293 | _frequency_number = ee->frequency_number;
|
---|
294 | _tki = ee->tk-3*60*60; if (_tki < 0) _tki += 86400;
|
---|
295 |
|
---|
296 | // Initialize status vector
|
---|
297 | // ------------------------
|
---|
298 | _tt = _GPSweeks;
|
---|
299 |
|
---|
300 | _xv(1) = _x_pos * 1.e3;
|
---|
301 | _xv(2) = _y_pos * 1.e3;
|
---|
302 | _xv(3) = _z_pos * 1.e3;
|
---|
303 | _xv(4) = _x_velocity * 1.e3;
|
---|
304 | _xv(5) = _y_velocity * 1.e3;
|
---|
305 | _xv(6) = _z_velocity * 1.e3;
|
---|
306 | }
|
---|