// Part of BNC, a utility for retrieving decoding and // converting GNSS data streams from NTRIP broadcasters. // // Copyright (C) 2007 // German Federal Agency for Cartography and Geodesy (BKG) // http://www.bkg.bund.de // Czech Technical University Prague, Department of Geodesy // http://www.fsv.cvut.cz // // Email: euref-ip@bkg.bund.de // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation, version 2. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. /* ------------------------------------------------------------------------- * BKG NTRIP Client * ------------------------------------------------------------------------- * * Class: RTCM3Decoder * * Purpose: RTCM3 Decoder * * Author: L. Mervart * * Created: 24-Aug-2006 * * Changes: * * -----------------------------------------------------------------------*/ #include #include #include #include #include #include "RTCM3Decoder.h" #include "../RTCM/rtcm_utils.h" #include "bncconst.h" #include "bncapp.h" #include "bncutils.h" #include "bncsettings.h" using namespace std; #ifndef isinf # define isinf(x) 0 #endif // Error Handling //////////////////////////////////////////////////////////////////////////// void RTCM3Error(const char*, ...) { } // Constructor //////////////////////////////////////////////////////////////////////////// RTCM3Decoder::RTCM3Decoder(const QString& staID, bncRawFile* rawFile) : GPSDecoder() { _staID = staID; _rawFile = rawFile; bncSettings settings; _checkMountPoint = settings.value("miscMount").toString(); connect(this, SIGNAL(newGPSEph(gpsephemeris*)), (bncApp*) qApp, SLOT(slotNewGPSEph(gpsephemeris*))); connect(this, SIGNAL(newGlonassEph(glonassephemeris*)), (bncApp*) qApp, SLOT(slotNewGlonassEph(glonassephemeris*))); // Sub-Decoder for Clock and Orbit Corrections // ------------------------------------------- _coDecoder = new RTCM3coDecoder(staID); // Mode can be either observations or corrections // ---------------------------------------------- _mode = unknown; // Antenna position (used for decoding of message 1003) // ---------------------------------------------------- _antXYZ[0] = _antXYZ[1] = _antXYZ[2] = 0; } // Destructor //////////////////////////////////////////////////////////////////////////// RTCM3Decoder::~RTCM3Decoder() { delete _coDecoder; } // //////////////////////////////////////////////////////////////////////////// t_irc RTCM3Decoder::Decode(char* buffer, int bufLen, vector& errmsg) { errmsg.clear(); bool decoded = false; // If read from file, we set the mode according to staID // ----------------------------------------------------- if (!_staID_corrections.isEmpty() && _rawFile) { if (_rawFile->staID() == _staID_corrections) { _mode = corrections; } else { _mode = observations; } } // Try to decode Clock and Orbit Corrections // ----------------------------------------- if (_mode == unknown || _mode == corrections) { if ( _coDecoder->Decode(buffer, bufLen, errmsg) == success ) { decoded = true; if (_mode == unknown) { if (_rawFile) { _staID_corrections = _rawFile->staID(); } else { _mode = corrections; } } } } // Find the corresponding parser // ----------------------------- QByteArray staID("default"); if (_rawFile) { staID = _rawFile->staID(); } bool newParser = !_parsers.contains(staID); RTCM3ParserData& parser = _parsers[staID]; // Get Glonass Slot Numbers from Global Array // ------------------------------------------ bncApp* app = (bncApp*) qApp; app->getGlonassSlotNums(parser.GLOFreq); // Initialize a new parser // ----------------------- if (newParser) { parser.rinex3 = 0; memset(&parser, 0, sizeof(parser)); double secGPS; currentGPSWeeks(parser.GPSWeek, secGPS); parser.GPSTOW = int(secGPS); } // Remaining part decodes the Observations // --------------------------------------- if (_mode == unknown || _mode == observations || _checkMountPoint == _staID || _checkMountPoint == "ALL") { for (int ii = 0; ii < bufLen; ii++) { parser.Message[parser.MessageSize++] = buffer[ii]; if (parser.MessageSize >= parser.NeedBytes) { while(int rr = RTCM3Parser(&parser)) { // RTCMv3 message types // -------------------- _typeList.push_back(parser.blocktype); // RTCMv3 antenna descriptor // ------------------------- if(rr == 1007 || rr == 1008 || rr == 1033) { _antType.push_back(parser.antenna); /* correct ? */ } // RTCMv3 antenna XYZ // ------------------ else if(rr == 1005) { _antList.push_back(t_antInfo()); _antList.back().type = t_antInfo::ARP; _antList.back().xx = parser.antX * 1e-4; _antList.back().yy = parser.antY * 1e-4; _antList.back().zz = parser.antZ * 1e-4; _antList.back().message = rr; // Remember station position for 1003 message decoding _antXYZ[0] = parser.antX * 1e-4; _antXYZ[1] = parser.antY * 1e-4; _antXYZ[2] = parser.antZ * 1e-4; } // RTCMv3 antenna XYZ-H // -------------------- else if(rr == 1006) { _antList.push_back(t_antInfo()); _antList.back().type = t_antInfo::ARP; _antList.back().xx = parser.antX * 1e-4; _antList.back().yy = parser.antY * 1e-4; _antList.back().zz = parser.antZ * 1e-4; _antList.back().height = parser.antH * 1e-4; _antList.back().height_f = true; _antList.back().message = rr; // Remember station position for 1003 message decoding _antXYZ[0] = parser.antX * 1e-4; _antXYZ[1] = parser.antY * 1e-4; _antXYZ[2] = parser.antZ * 1e-4; } // GNSS Observations // ----------------- else if (rr == 1 || rr == 2) { decoded = true; if (!parser.init) { HandleHeader(&parser); parser.init = 1; } // apply "GPS Integer L1 Pseudorange Modulus Ambiguity" bool applyModulusAmb = false; ///if (rr == 2) { /// applyModulusAmb = true; ///} if (rr == 2) { emit(newMessage( (_staID + ": No valid RINEX! All values are modulo 299792.458!").toAscii(), true)); } for (int ii = 0; ii < parser.Data.numsats; ii++) { p_obs obs = new t_obs(); int satID = parser.Data.satellites[ii]; // GPS // --- if (satID >= PRN_GPS_START && satID <= PRN_GPS_END) { obs->_o.satSys = 'G'; obs->_o.satNum = satID; } // Glonass // ------- else if (satID >= PRN_GLONASS_START && satID <= PRN_GLONASS_END) { obs->_o.satSys = 'R'; obs->_o.satNum = satID - PRN_GLONASS_START + 1; if (obs->_o.satNum <= PRN_GLONASS_NUM && parser.GLOFreq[obs->_o.satNum-1] != 0) { obs->_o.slotNum = parser.GLOFreq[obs->_o.satNum-1] - 100; } else { delete obs; obs = 0; } } // Galileo // ------- else if (satID >= PRN_GALILEO_START && satID <= PRN_GALILEO_END) { obs->_o.satSys = 'E'; obs->_o.satNum = satID - PRN_GALILEO_START + 1; } // WAAS // ---- else if (satID >= PRN_WAAS_START && satID <= PRN_WAAS_END) { obs->_o.satSys = 'S'; obs->_o.satNum = satID - PRN_WAAS_START + 20; } // Giove A and B // ------------- else if (satID >= PRN_GIOVE_START && satID <= PRN_GIOVE_END) { obs->_o.satSys = 'E'; obs->_o.satNum = satID - PRN_GIOVE_START + PRN_GIOVE_OFFSET; } // Unknown System // -------------- else { delete obs; obs = 0; } if (obs) { _obsList.push_back(obs); } else { continue; } obs->_o.GPSWeek = parser.Data.week; obs->_o.GPSWeeks = parser.Data.timeofweek / 1000.0; // Estimate "GPS Integer L1 Pseudorange Modulus Ambiguity" // ------------------------------------------------------- double modulusAmb = 0; if (applyModulusAmb) { // Missing antenna coordinates: skip all data if ( !_antXYZ[0] && !_antXYZ[1] && !_antXYZ[2] ) { continue; } ostringstream prns; prns << obs->_o.satSys << setfill('0') << setw(2) << obs->_o.satNum; string prn = prns.str(); // Missing ephemerides, skip satellite if (_ephList.find(prn) == _ephList.end()) { continue; } const t_eph* eph = &(_ephList.find(prn)->second); double rho, xSat, ySat, zSat, clkSat, GPSWeeks_tot; int GPSWeek_tot; cmpRho(eph, _antXYZ[0], _antXYZ[1], _antXYZ[2], obs->_o.GPSWeek, obs->_o.GPSWeeks, rho, GPSWeek_tot, GPSWeeks_tot, xSat, ySat, zSat, clkSat); const double CC = 299792458.0; int nn = static_cast(rho / (CC * 0.001)); modulusAmb = nn * CC * 0.001; } // Loop over all data types // ------------------------ for (int jj = 0; jj < parser.numdatatypesGPS; jj++) { int v = 0; // sepearated declaration and initalization of df and pos. Perlt int df; int pos; df = parser.dataflag[jj]; pos = parser.datapos[jj]; if ( (parser.Data.dataflags[ii] & df) && !isnan(parser.Data.measdata[ii][pos]) && !isinf(parser.Data.measdata[ii][pos])) { v = 1; } else { df = parser.dataflagGPS[jj]; pos = parser.dataposGPS[jj]; if ( (parser.Data.dataflags[ii] & df) && !isnan(parser.Data.measdata[ii][pos]) && !isinf(parser.Data.measdata[ii][pos])) { v = 1; } } if (!v) { continue; } else { int isat = (parser.Data.satellites[ii] < 120 ? parser.Data.satellites[ii] : parser.Data.satellites[ii] - 80); // variables df and pos are used consequently. Perlt if (df & GNSSDF_C1DATA) { obs->_o.C1 = parser.Data.measdata[ii][pos] + modulusAmb; } else if (df & GNSSDF_C2DATA) { obs->_o.C2 = parser.Data.measdata[ii][pos] + modulusAmb; } else if (df & GNSSDF_P1DATA) { obs->_o.P1 = parser.Data.measdata[ii][pos] + modulusAmb; } else if (df & GNSSDF_P2DATA) { obs->_o.P2 = parser.Data.measdata[ii][pos] + modulusAmb; } else if (df & (GNSSDF_L1CDATA|GNSSDF_L1PDATA)) { obs->_o.L1 = parser.Data.measdata[ii][pos] + modulusAmb; obs->_o.SNR1 = parser.Data.snrL1[ii]; obs->_o.lock_timei_L1 = parser.lastlockGPSl1[isat]; } else if (df & (GNSSDF_L2CDATA|GNSSDF_L2PDATA)) { obs->_o.L2 = parser.Data.measdata[ii][pos] + modulusAmb; obs->_o.SNR2 = parser.Data.snrL2[ii]; obs->_o.lock_timei_L2 = parser.lastlockGPSl2[isat]; } else if (df & (GNSSDF_S1CDATA|GNSSDF_S1PDATA)) { obs->_o.S1 = parser.Data.measdata[ii][pos]; } else if (df & (GNSSDF_S2CDATA|GNSSDF_S2PDATA)) { obs->_o.S2 = parser.Data.measdata[ii][pos]; } } } } } // GPS Ephemeris // ------------- else if (rr == 1019) { decoded = true; gpsephemeris* ep = new gpsephemeris(parser.ephemerisGPS); emit newGPSEph(ep); } // GLONASS Ephemeris // ----------------- else if (rr == 1020) { decoded = true; glonassephemeris* ep = new glonassephemeris(parser.ephemerisGLONASS); emit newGlonassEph(ep); } } } } if (!_rawFile && _mode == unknown && decoded) { _mode = observations; } } if (decoded) { app->storeGlonassSlotNums(parser.GLOFreq); return success; } else { return failure; } } // Store ephemerides //////////////////////////////////////////////////////////////////////////////////////// bool RTCM3Decoder::storeEph(const gpsephemeris& gpseph) { t_ephGPS eph; eph.set(&gpseph); return storeEph(eph); } bool RTCM3Decoder::storeEph(const t_ephGPS& gpseph) { const double secPerWeek = 7.0 * 24.0 * 3600.0; double weekold = 0.0; double weeknew = gpseph.GPSweek() + gpseph.GPSweeks() / secPerWeek; if ( _ephList.find(gpseph.prn()) != _ephList.end() ) { weekold = _ephList.find(gpseph.prn())->second.GPSweek() + _ephList.find(gpseph.prn())->second.GPSweeks() / secPerWeek; } if ( weeknew - weekold > 1.0/secPerWeek ) { _ephList[gpseph.prn()] = gpseph; return true; } return false; }