// Part of BNC, a utility for retrieving decoding and // converting GNSS data streams from NTRIP broadcasters. // // Copyright (C) 2007 // German Federal Agency for Cartography and Geodesy (BKG) // http://www.bkg.bund.de // Czech Technical University Prague, Department of Geodesy // http://www.fsv.cvut.cz // // Email: euref-ip@bkg.bund.de // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation, version 2. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. /* ------------------------------------------------------------------------- * BKG NTRIP Client * ------------------------------------------------------------------------- * * Class: RTCM3Decoder * * Purpose: RTCM3 Decoder * * Author: L. Mervart * * Created: 24-Aug-2006 * * Changes: * * -----------------------------------------------------------------------*/ #include #include #include #include "RTCM3Decoder.h" #include "RTCM3coDecoder.h" #include "bncconst.h" #include "bncapp.h" #include "bncutils.h" /* Weber, for latencies */ using namespace std; #ifndef isinf # define isinf(x) 0 #endif // Error Handling //////////////////////////////////////////////////////////////////////////// void RTCM3Error(const char*, ...) { } // Constructor //////////////////////////////////////////////////////////////////////////// RTCM3Decoder::RTCM3Decoder(const QString& staID) : GPSDecoder() { QSettings settings; _checkMountPoint = settings.value("messTypes").toString(); _staID = staID; // Latency _numLat = 0; _minLat = 1000.; _maxLat = -1000.; _sumLat = 0.; _sumLatQ = 0.; _followSec = false; _meanDiff = 0.; _diffSecGPS= 0.; _numGaps = 0; _oldSecGPS = 0.; _newSecGPS = 0.; _curLat = 0.; _perfIntr = 86400; if ( settings.value("perfIntr").toString().isEmpty() ) { _perfIntr = 0; } if ( settings.value("perfIntr").toString().indexOf("1 min") != -1 ) { _perfIntr = 60; } if ( settings.value("perfIntr").toString().indexOf("5 min") != -1 ) { _perfIntr = 300; } if ( settings.value("perfIntr").toString().indexOf("15 min") != -1 ) { _perfIntr = 900; } if ( settings.value("perfIntr").toString().indexOf("1 hour") != -1 ) { _perfIntr = 3600; } if ( settings.value("perfIntr").toString().indexOf("6 hours") != -1 ) { _perfIntr = 21600; } if ( settings.value("perfIntr").toString().indexOf("1 day") != -1 ) { _perfIntr = 86400; } // Ensure, that the Decoder uses the "old" convention for the data structure for Rinex2. Perlt _Parser.rinex3 = 0; memset(&_Parser, 0, sizeof(_Parser)); double secGPS; currentGPSWeeks(_Parser.GPSWeek, secGPS); _Parser.GPSTOW = int(secGPS); connect(this, SIGNAL(newGPSEph(gpsephemeris*)), (bncApp*) qApp, SLOT(slotNewGPSEph(gpsephemeris*))); connect(this, SIGNAL(newGlonassEph(glonassephemeris*)), (bncApp*) qApp, SLOT(slotNewGlonassEph(glonassephemeris*))); // Sub-Decoder for Clock and Orbit Corrections // ------------------------------------------- _coDecoder = new RTCM3coDecoder(staID); // Mode can be either observations or corrections // ---------------------------------------------- _mode = unknown; } // Destructor //////////////////////////////////////////////////////////////////////////// RTCM3Decoder::~RTCM3Decoder() { delete _coDecoder; } // //////////////////////////////////////////////////////////////////////////// t_irc RTCM3Decoder::Decode(char* buffer, int bufLen, vector& errmsg) { errmsg.clear(); bool decoded = false; // Try to decode Clock and Orbit Corrections // ----------------------------------------- if (_mode == unknown || _mode == corrections) { if ( _coDecoder->Decode(buffer, bufLen, errmsg) == success ) { decoded = true; // Latency // ------- if (_perfIntr>0) { if (0<_coDecoder->_epochList.size()) { for (int ii=0;ii<_coDecoder->_epochList.size();ii++) { int week; double sec; _newSecGPS = _coDecoder->_epochList[ii]; currentGPSWeeks(week, sec); double dt = fabs(sec - _newSecGPS); const double secPerWeek = 7.0 * 24.0 * 3600.0; if (dt > 0.5 * secPerWeek) { if (sec > _newSecGPS) { sec -= secPerWeek; } else { sec += secPerWeek; } } if (_newSecGPS != _oldSecGPS) { if (int(_newSecGPS) % _perfIntr < int(_oldSecGPS) % _perfIntr) { if (_numLat>0) { QString late; if (_meanDiff>0.) { late = QString(": Mean latency %1 sec, min %2, max %3, rms %4, %5 epochs, %6 gaps") .arg(int(_sumLat/_numLat*100)/100.) .arg(int(_minLat*100)/100.) .arg(int(_maxLat*100)/100.) .arg(int((sqrt((_sumLatQ - _sumLat * _sumLat / _numLat)/_numLat))*100)/100.) .arg(_numLat) .arg(_numGaps); emit(newMessage(QString(_staID + late ).toAscii() ) ); } else { late = QString(": Mean latency %1 sec, min %2, max %3, rms %4, %5 epochs") .arg(int(_sumLat/_numLat*100)/100.) .arg(int(_minLat*100)/100.) .arg(int(_maxLat*100)/100.) .arg(int((sqrt((_sumLatQ - _sumLat * _sumLat / _numLat)/_numLat))*100)/100.) .arg(_numLat); emit(newMessage(QString(_staID + late ).toAscii() ) ); } } _meanDiff = int(_diffSecGPS)/_numLat; _diffSecGPS = 0.; _numGaps = 0; _sumLat = 0.; _sumLatQ = 0.; _numLat = 0; _minLat = 1000.; _maxLat = -1000.; } if (_followSec) { _diffSecGPS += _newSecGPS - _oldSecGPS; if (_meanDiff>0.) { if (_newSecGPS - _oldSecGPS > 1.5 * _meanDiff) { _numGaps += 1; } } } _curLat = sec - _newSecGPS; _sumLat += _curLat; _sumLatQ += _curLat * _curLat; if (_curLat < _minLat) {_minLat = _curLat;} if (_curLat >= _maxLat) {_maxLat = _curLat;} _numLat += 1; _oldSecGPS = _newSecGPS; _followSec = true; } } } } _coDecoder->_epochList.clear(); if (_mode == unknown) { _mode = corrections; } } } // Remaining part decodes the Observations // --------------------------------------- if (_mode == unknown || _mode == observations || _checkMountPoint == _staID || _checkMountPoint == "ALL") { for (int ii = 0; ii < bufLen; ii++) { _Parser.Message[_Parser.MessageSize++] = buffer[ii]; if (_Parser.MessageSize >= _Parser.NeedBytes) { while(int rr = RTCM3Parser(&_Parser)) { // RTCMv3 message types // -------------------- _typeList.push_back(_Parser.blocktype); // RTCMv3 antenna descriptor // ------------------------- if(rr == 1007 || rr == 1008 || rr == 1033) { _antType.push_back(_Parser.antenna); /* correct ? */ } // RTCMv3 antenna XYZ // ------------------ else if(rr == 1005) { _antList5.push_back(_Parser.antX); _antList5.push_back(_Parser.antY); _antList5.push_back(_Parser.antZ); } // RTCMv3 antenna XYZ-H // -------------------- else if(rr == 1006) { _antList6.push_back(_Parser.antX); _antList6.push_back(_Parser.antY); _antList6.push_back(_Parser.antZ); _antList6.push_back(_Parser.antH); } // GNSS Observations // ----------------- else if (rr == 1 || rr == 2) { decoded = true; if (!_Parser.init) { HandleHeader(&_Parser); _Parser.init = 1; } if (rr == 2) { emit(newMessage( (_staID + ": No valid RINEX! All values are modulo 299792.458!").toAscii() )); } for (int ii = 0; ii < _Parser.Data.numsats; ii++) { p_obs obs = new t_obs(); _obsList.push_back(obs); if (_Parser.Data.satellites[ii] <= PRN_GPS_END) { obs->_o.satSys = 'G'; obs->_o.satNum = _Parser.Data.satellites[ii]; } else if (_Parser.Data.satellites[ii] <= PRN_GLONASS_END) { obs->_o.satSys = 'R'; obs->_o.satNum = _Parser.Data.satellites[ii] - PRN_GLONASS_START + 1; } else { obs->_o.satSys = 'S'; obs->_o.satNum = _Parser.Data.satellites[ii] - PRN_WAAS_START + 20; } obs->_o.GPSWeek = _Parser.Data.week; obs->_o.GPSWeeks = _Parser.Data.timeofweek / 1000.0; for (int jj = 0; jj < _Parser.numdatatypesGPS; jj++) { int v = 0; // sepearated declaration and initalization of df and pos. Perlt int df; int pos; df = _Parser.dataflag[jj]; pos = _Parser.datapos[jj]; if ( (_Parser.Data.dataflags[ii] & df) && !isnan(_Parser.Data.measdata[ii][pos]) && !isinf(_Parser.Data.measdata[ii][pos])) { v = 1; } else { df = _Parser.dataflagGPS[jj]; pos = _Parser.dataposGPS[jj]; if ( (_Parser.Data.dataflags[ii] & df) && !isnan(_Parser.Data.measdata[ii][pos]) && !isinf(_Parser.Data.measdata[ii][pos])) { v = 1; } } if (!v) { continue; } else { int isat = (_Parser.Data.satellites[ii] < 120 ? _Parser.Data.satellites[ii] : _Parser.Data.satellites[ii] - 80); // variables df and pos are used consequently. Perlt if (df & GNSSDF_C1DATA) { obs->_o.C1 = _Parser.Data.measdata[ii][pos]; } else if (df & GNSSDF_C2DATA) { obs->_o.C2 = _Parser.Data.measdata[ii][pos]; } else if (df & GNSSDF_P1DATA) { obs->_o.P1 = _Parser.Data.measdata[ii][pos]; } else if (df & GNSSDF_P2DATA) { obs->_o.P2 = _Parser.Data.measdata[ii][pos]; } else if (df & (GNSSDF_L1CDATA|GNSSDF_L1PDATA)) { obs->_o.L1 = _Parser.Data.measdata[ii][pos]; obs->_o.SNR1 = _Parser.Data.snrL1[ii]; obs->_o.lock_timei_L1 = _Parser.lastlockl1[isat]; } else if (df & (GNSSDF_L2CDATA|GNSSDF_L2PDATA)) { obs->_o.L2 = _Parser.Data.measdata[ii][pos]; obs->_o.SNR2 = _Parser.Data.snrL2[ii]; obs->_o.lock_timei_L2 = _Parser.lastlockl2[isat]; } else if (df & (GNSSDF_S1CDATA|GNSSDF_S1PDATA)) { obs->_o.S1 = _Parser.Data.measdata[ii][pos]; } else if (df & (GNSSDF_S2CDATA|GNSSDF_S2PDATA)) { obs->_o.S2 = _Parser.Data.measdata[ii][pos]; } } } } } // GPS Ephemeris // ------------- else if (rr == 1019) { decoded = true; gpsephemeris* ep = new gpsephemeris(_Parser.ephemerisGPS); #ifdef DEBUG_RTCM2_2021 QString msg = QString("%1: got eph %2 IODC %3 GPSweek %4 TOC %5 TOE %6") .arg(_staID) .arg(ep->satellite, 2) .arg(ep->IODC, 4) .arg(ep->GPSweek, 4) .arg(ep->TOC, 6) .arg(ep->TOE, 6); emit(newMessage(msg.toAscii())); #endif emit newGPSEph(ep); } // GLONASS Ephemeris // ----------------- else if (rr == 1020) { decoded = true; glonassephemeris* ep = new glonassephemeris(_Parser.ephemerisGLONASS); emit newGlonassEph(ep); } } } } if (_mode == unknown && decoded) { _mode = observations; } } if (decoded) { return success; } else { return failure; } }