source: ntrip/trunk/BNC/RTCM/RTCM2.cpp@ 254

Last change on this file since 254 was 254, checked in by mervart, 18 years ago

* empty log message *

File size: 26.5 KB
Line 
1//------------------------------------------------------------------------------
2//
3// RTCM2.cpp
4//
5// Purpose:
6//
7// Module for extraction of RTCM2 messages
8//
9// References:
10//
11// RTCM 10402.3 Recommended Standards for Differential GNSS (Global
12// Navigation Satellite Systems) Service; RTCM Paper 136-2001/SC104-STD,
13// Version 2.3, 20 Aug. 2001; Radio Technical Commission For Maritime
14// Services, Alexandria, Virgina (2001).
15// ICD-GPS-200; Navstar GPS Space Segment / Navigation User Interfaces;
16// Revison C; 25 Sept. 1997; Arinc Research Corp., El Segundo (1997).
17// Jensen M.; RTCM2ASC Documentation;
18// URL http://kom.aau.dk/~borre/masters/receiver/rtcm2asc.htm;
19// last accessed 17 Sep. 2006
20// Sager J.; Decoder for RTCM SC-104 data from a DGPS beacon receiver;
21// URL http://www.wsrcc.com/wolfgang/ftp/rtcm-0.3.tar.gz;
22// last accessed 17 Sep. 2006
23//
24// Notes:
25//
26// - The host computer is assumed to use little endian (Intel) byte order
27//
28// Last modified:
29//
30// 2006/09/17 OMO Created
31// 2006/09/19 OMO Fixed getHeader() methods
32// 2006/09/21 OMO Reduced phase ambiguity to 2^23 cycles
33// 2006/10/05 OMO Specified const'ness of various member functions
34// 2006/10/13 LMV Fixed resolvedPhase to handle missing C1 range
35// 2006/10/14 LMV Fixed loop cunter in ThirtyBitWord
36// 2006/10/14 LMV Exception handling
37// 2006/10/17 OMO Removed obsolete check of multiple message indicator
38// 2006/10/17 OMO Fixed parity handling
39//
40// (c) DLR/GSOC
41//
42//------------------------------------------------------------------------------
43
44#include <bitset>
45#include <cmath>
46#include <fstream>
47#include <iomanip>
48#include <iostream>
49#include <string>
50#include <vector>
51
52#include "RTCM2.h"
53
54// Activate (1) or deactivate (0) debug output for tracing parity errors and
55// undersized packets in get(Unsigned)Bits
56
57#define DEBUG 0
58
59using namespace std;
60
61
62// GPS constants
63
64const double c_light = 299792458.0; // Speed of light [m/s]; IAU 1976
65const double f_L1 = 1575.42e6; // L1 frequency [Hz] (10.23MHz*154)
66const double f_L2 = 1227.60e6; // L2 frequency [Hz] (10.23MHz*120)
67
68const double lambda_L1 = c_light/f_L1; // L1 wavelength [m] (0.1903m)
69const double lambda_L2 = c_light/f_L2; // L2 wavelength [m]
70
71//
72// Bits for message availability checks
73//
74
75const int bit_L1rngGPS = 0;
76const int bit_L2rngGPS = 1;
77const int bit_L1cphGPS = 2;
78const int bit_L2cphGPS = 3;
79const int bit_L1rngGLO = 4;
80const int bit_L2rngGLO = 5;
81const int bit_L1cphGLO = 6;
82const int bit_L2cphGLO = 7;
83
84
85//
86// namespace rtcm2
87//
88
89namespace rtcm2 {
90
91
92//------------------------------------------------------------------------------
93//
94// class ThirtyBitWord (implementation)
95//
96// Purpose:
97//
98// Handling of RTCM2 30bit words
99//
100//------------------------------------------------------------------------------
101
102// Constructor
103
104ThirtyBitWord::ThirtyBitWord() : W(0) {
105};
106
107// Clear entire 30-bit word and 2-bit parity from previous word
108
109void ThirtyBitWord::clear() {
110 W = 0;
111};
112
113// Failure indicator for input operations
114
115bool ThirtyBitWord::fail() const {
116 return failure;
117};
118
119// Parity check
120
121bool ThirtyBitWord::validParity() const {
122
123 // Parity stuff
124
125 static const unsigned int PARITY_25 = 0xBB1F3480;
126 static const unsigned int PARITY_26 = 0x5D8F9A40;
127 static const unsigned int PARITY_27 = 0xAEC7CD00;
128 static const unsigned int PARITY_28 = 0x5763E680;
129 static const unsigned int PARITY_29 = 0x6BB1F340;
130 static const unsigned int PARITY_30 = 0x8B7A89C0;
131
132 // Look-up table for parity of eight bit bytes
133 // (parity=0 if the number of 0s and 1s is equal, else parity=1)
134 static unsigned char byteParity[] = {
135 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
136 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
137 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
138 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
139 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
140 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
141 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
142 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0
143 };
144
145 // Local variables
146
147 unsigned int t, w, p;
148
149 // The sign of the data is determined by the D30* parity bit
150 // of the previous data word. If D30* is set, invert the data
151 // bits D01..D24 to obtain the d01..d24 (but leave all other
152 // bits untouched).
153
154 w = W;
155 if ( w & 0x40000000 ) w ^= 0x3FFFFFC0;
156
157 // Compute the parity of the sign corrected data bits d01..d24
158 // as described in the ICD-GPS-200
159
160 t = w & PARITY_25;
161 p = ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
162 byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
163
164 t = w & PARITY_26;
165 p = (p<<1) |
166 ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
167 byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
168
169 t = w & PARITY_27;
170 p = (p<<1) |
171 ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
172 byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
173
174 t = w & PARITY_28;
175 p = (p<<1) |
176 ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
177 byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
178
179 t = w & PARITY_29;
180 p = (p<<1) |
181 ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
182 byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
183
184 t = w & PARITY_30;
185 p = (p<<1) |
186 ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
187 byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
188
189 return ( (W & 0x3f) == p);
190
191};
192
193
194// Check preamble
195
196bool ThirtyBitWord::isHeader() const {
197
198 const unsigned char Preamble = 0x66;
199
200 unsigned char b = (value()>>22) & 0xFF;
201
202 return ( b==Preamble );
203
204};
205
206
207// Return entire 32-bit (current word and previous parity)
208
209unsigned int ThirtyBitWord::all() const {
210 return W;
211};
212
213
214// Return sign-corrected 30-bit (or zero if parity mismatch)
215
216unsigned int ThirtyBitWord::value() const {
217
218 unsigned int w = W;
219
220 if (validParity()) {
221 // Return data and current parity bits. Invert data bits if D30*
222 // is set and discard old parity bits.
223 if ( w & 0x40000000 ) w ^= 0x3FFFFFC0;
224 return (w & 0x3FFFFFFF);
225 }
226 else {
227 // Error; invalid parity
228 return 0;
229 };
230
231};
232
233
234
235// Append a byte with six data bits
236
237void ThirtyBitWord::append(unsigned char b) {
238
239 // Look up table for swap (left-right) of 6 data bits
240 static const unsigned char
241 swap[] = {
242 0,32,16,48, 8,40,24,56, 4,36,20,52,12,44,28,60,
243 2,34,18,50,10,42,26,58, 6,38,22,54,14,46,30,62,
244 1,33,17,49, 9,41,25,57, 5,37,21,53,13,45,29,61,
245 3,35,19,51,11,43,27,59, 7,39,23,55,15,47,31,63
246 };
247
248 // Bits 7 and 6 (of 0..7) must be "01" for valid data bytes
249 if ( (b & 0x40) != 0x40 ) {
250 failure = true;
251 return;
252 };
253
254 // Swap bits 0..5 to restore proper bit order for 30bit words
255 b = swap[ b & 0x3f];
256
257 // Fill word
258 W = ( (W <<6) | (b & 0x3f) ) ;
259
260};
261
262
263// Get next 30bit word from string
264
265void ThirtyBitWord::get(string& buf) {
266
267 // Check if string is long enough
268
269 if (buf.size()<5) {
270 failure = true;
271 return;
272 };
273
274 // Process 5 bytes and remove them from the input
275
276 for (int i=0; i<5; i++) append(buf[i]);
277 buf.erase(0,5);
278
279#if (DEBUG>0)
280 if (!validParity()) {
281 cout << "Parity error "
282 << bitset<32>(all()) << endl;
283 };
284#endif
285 failure = false;
286
287};
288
289// Get next 30bit word from file
290
291void ThirtyBitWord::get(istream& inp) {
292
293 unsigned char b;
294
295 for (int i=0; i<5; i++) {
296 inp >> b;
297 if (inp.fail()) { clear(); return; };
298 append(b);
299 };
300
301#if (DEBUG>0)
302 if (!validParity()) {
303 cout << "Parity error "
304 << bitset<32>(all()) << endl;
305 };
306#endif
307 failure = false;
308
309};
310
311// Get next header word from string
312
313void ThirtyBitWord::getHeader(string& buf) {
314
315 unsigned int W_old = W;
316 unsigned int i;
317
318 i=0;
319 while (!isHeader() || i<5 ) {
320 // Check if string is long enough; if not restore old word and exit
321 if (buf.size()<i+1) {
322 W = W_old;
323 failure = true;
324 return;
325 };
326 // Process byte
327 append(buf[i]); i++;
328 };
329
330 // Remove processed bytes from buffer
331
332 buf.erase(0,i);
333
334#if (DEBUG>0)
335 if (!validParity()) {
336 cout << "Parity error "
337 << bitset<32>(all()) << endl;
338 };
339#endif
340 failure = false;
341
342};
343
344// Get next header word from file
345
346void ThirtyBitWord::getHeader(istream& inp) {
347
348 unsigned char b;
349 unsigned int i;
350
351 i=0;
352 while ( !isHeader() || i<5 ) {
353 inp >> b;
354 if (inp.fail()) { clear(); return; };
355 append(b); i++;
356 };
357
358#if (DEBUG>0)
359 if (!validParity()) {
360 cout << "Parity error "
361 << bitset<32>(all()) << endl;
362 };
363#endif
364 failure = false;
365
366};
367
368
369//------------------------------------------------------------------------------
370//
371// RTCM2packet (class implementation)
372//
373// Purpose:
374//
375// A class for handling RTCM2 data packets
376//
377//------------------------------------------------------------------------------
378
379// Constructor
380
381RTCM2packet::RTCM2packet() {
382 clear();
383};
384
385// Initialization
386
387void RTCM2packet::clear() {
388
389 W.clear();
390
391 H1=0;
392 H2=0;
393
394 DW.resize(0,0);
395
396};
397
398// Complete packet, valid parity
399
400bool RTCM2packet::valid() const {
401
402 // The methods for creating a packet (get,">>") ensure
403 // that a packet has a consistent number of data words
404 // and a valid parity in all header and data words.
405 // Therefore a packet is either empty or valid.
406
407 return (H1!=0);
408
409};
410
411
412//
413// Gets the next packet from the buffer
414//
415
416void RTCM2packet::getPacket(std::string& buf) {
417
418 int n;
419 ThirtyBitWord W_old = W;
420 string buf_old = buf;
421
422 // Try to read a full packet. If the input buffer is too short
423 // clear all data and restore the latest 30-bit word prior to
424 // the getPacket call. The empty header word will indicate
425 // an invalid message, which signals an unsuccessful getPacket()
426 // call.
427
428 W.getHeader(buf);
429 H1 = W.value();
430 if (W.fail()) { clear(); W=W_old; buf=buf_old; return; };
431 if (!W.validParity()) { clear(); return; };
432
433 W.get(buf);
434 H2 = W.value();
435 if (W.fail()) { clear(); W=W_old; buf=buf_old; return; };
436 if (!W.validParity()) { clear(); return; };
437
438 n = nDataWords();
439 DW.resize(n);
440 for (int i=0; i<n; i++) {
441 W.get(buf);
442 DW[i] = W.value();
443 if (W.fail()) { clear(); W=W_old; buf=buf_old; return; };
444 if (!W.validParity()) { clear(); return; };
445 };
446
447 return;
448
449};
450
451
452//
453// Gets the next packet from the input stream
454//
455
456void RTCM2packet::getPacket(std::istream& inp) {
457
458 int n;
459
460 W.getHeader(inp);
461 H1 = W.value();
462 if (W.fail() || !W.validParity()) { clear(); return; }
463
464 W.get(inp);
465 H2 = W.value();
466 if (W.fail() || !W.validParity()) { clear(); return; }
467
468 n = nDataWords();
469 DW.resize(n);
470 for (int i=0; i<n; i++) {
471 W.get(inp);
472 DW[i] = W.value();
473 if (W.fail() || !W.validParity()) { clear(); return; }
474 };
475
476 return;
477
478};
479
480//
481// Input operator
482//
483// Reads an RTCM2 packet from the input stream.
484//
485
486istream& operator >> (istream& is, RTCM2packet& p) {
487
488 p.getPacket(is);
489
490 return is;
491
492};
493
494// Access methods
495
496unsigned int RTCM2packet::header1() const {
497 return H1;
498};
499
500unsigned int RTCM2packet::header2() const {
501 return H2;
502};
503
504unsigned int RTCM2packet::dataWord(int i) const {
505 if ( (unsigned int)i < DW.size() ) {
506 return DW[i];
507 }
508 else {
509 return 0;
510 }
511};
512
513unsigned int RTCM2packet::msgType() const {
514 return ( H1>>16 & 0x003F );
515};
516
517unsigned int RTCM2packet::stationID() const {
518 return ( H1>> 6 & 0x03FF );
519};
520
521unsigned int RTCM2packet::modZCount() const {
522 return ( H2>>17 & 0x01FFF );
523};
524
525unsigned int RTCM2packet::seqNumber() const {
526 return ( H2>>14 & 0x0007 );
527};
528
529unsigned int RTCM2packet::nDataWords() const {
530 return ( H2>> 9 & 0x001F );
531};
532
533unsigned int RTCM2packet::staHealth() const {
534 return ( H2>> 6 & 0x0003 );
535};
536
537
538//
539// Get unsigned bit field
540//
541// Bits are numbered from left (msb) to right (lsb) starting at bit 0
542//
543
544unsigned int RTCM2packet::getUnsignedBits ( unsigned int start,
545 unsigned int n ) const {
546
547 unsigned int iFirst = start/24; // Index of first data word
548 unsigned int iLast = (start+n-1)/24; // Index of last data word
549 unsigned int bitField = 0;
550 unsigned int tmp;
551
552 // Checks
553
554 if (n>32) {
555 throw("Error: can't handle >32 bits in RTCM2packet::getUnsignedBits");
556 };
557
558 if ( 24*DW.size() < start+n-1 ) {
559#if (DEBUG>0)
560 cerr << "Debug output RTCM2packet::getUnsignedBits" << endl
561 << " P.msgType: " << setw(5) << msgType() << endl
562 << " P.nDataWords: " << setw(5) << nDataWords() << endl
563 << " start: " << setw(5) << start << endl
564 << " n: " << setw(5) << n << endl
565 << " P.H1: " << setw(5) << bitset<32>(H1) << endl
566 << " P.H2: " << setw(5) << bitset<32>(H2) << endl
567 << endl
568 << flush;
569#endif
570 throw("Error: Packet too short in RTCM2packet::getUnsignedBits");
571 }
572
573 // Handle initial data word
574 // Get all data bits. Strip parity and unwanted leading bits.
575 // Store result in 24 lsb bits of tmp.
576
577 tmp = (DW[iFirst]>>6) & 0xFFFFFF;
578 tmp = ( ( tmp << start%24) & 0xFFFFFF ) >> start%24 ;
579
580 // Handle central data word
581
582 if ( iFirst<iLast ) {
583 bitField = tmp;
584 for (unsigned int iWord=iFirst+1; iWord<iLast; iWord++) {
585 tmp = (DW[iWord]>>6) & 0xFFFFFF;
586 bitField = (bitField << 24) | tmp;
587 };
588 tmp = (DW[iLast]>>6) & 0xFFFFFF;
589 };
590
591 // Handle last data word
592
593 tmp = tmp >> (23-(start+n-1)%24);
594 bitField = (bitField << ((start+n-1)%24+1)) | tmp;
595
596 // Done
597
598 return bitField;
599
600};
601
602//
603// Get signed bit field
604//
605// Bits are numbered from left (msb) to right (lsb) starting at bit 0
606//
607
608int RTCM2packet::getBits ( unsigned int start,
609 unsigned int n ) const {
610
611
612 // Checks
613
614 if (n>32) {
615 throw("Error: can't handle >32 bits in RTCM2packet::getBits");
616 };
617
618 if ( 24*DW.size() < start+n-1 ) {
619#if (DEBUG>0)
620 cerr << "Debug output RTCM2packet::getUnsignedBits" << endl
621 << " P.msgType: " << setw(5) << msgType() << endl
622 << " P.nDataWords: " << setw(5) << nDataWords() << endl
623 << " start: " << setw(5) << start << endl
624 << " n: " << setw(5) << n << endl
625 << " P.H1: " << setw(5) << bitset<32>(H1) << endl
626 << " P.H2: " << setw(5) << bitset<32>(H2) << endl
627 << endl
628 << flush;
629#endif
630 throw("Error: Packet too short in RTCM2packet::getBits");
631 }
632
633 return ((int)(getUnsignedBits(start,n)<<(32-n))>>(32-n));
634
635};
636
637
638//------------------------------------------------------------------------------
639//
640// RTCM2_03 (class implementation)
641//
642// Purpose:
643//
644// A class for handling RTCM 2 GPS Reference Station Parameters messages
645//
646//------------------------------------------------------------------------------
647
648void RTCM2_03::extract(const RTCM2packet& P) {
649
650 // Check validity and packet type
651
652 validMsg = (P.valid());
653 if (!validMsg) return;
654
655 validMsg = (P.ID()==03);
656 if (!validMsg) return;
657
658 // Antenna reference point coordinates
659
660 x = P.getBits( 0,32)*0.01; // X [m]
661 y = P.getBits(32,32)*0.01; // Y [m]
662 z = P.getBits(64,32)*0.01; // Z [m]
663
664};
665
666//------------------------------------------------------------------------------
667//
668// RTCM2_23 (class implementation)
669//
670// Purpose:
671//
672// A class for handling RTCM 2 Antenna Type Definition messages
673//
674//------------------------------------------------------------------------------
675
676void RTCM2_23::extract(const RTCM2packet& P) {
677
678 int nad, nas;
679
680 // Check validity and packet type
681
682 validMsg = (P.valid());
683 if (!validMsg) return;
684
685 validMsg = (P.ID()==23);
686 if (!validMsg) return;
687
688 // Antenna descriptor
689 antType = "";
690 nad = P.getUnsignedBits(3,5);
691 for (int i=0;i<nad;i++)
692 antType += (char)P.getUnsignedBits(8+i*8,8);
693
694 // Optional antenna serial numbers
695 if (P.getUnsignedBits(2,1)==1) {
696 nas = P.getUnsignedBits(19+8*nad,5);
697 antSN = "";
698 for (int i=0;i<nas;i++)
699 antSN += (char)P.getUnsignedBits(24+8*nas+i*8,8);
700 };
701
702};
703
704
705//------------------------------------------------------------------------------
706//
707// RTCM2_24 (class implementation)
708//
709// Purpose:
710//
711// A class for handling RTCM 2 Reference Station Antenna
712// Reference Point Parameter messages
713//
714//------------------------------------------------------------------------------
715
716void RTCM2_24::extract(const RTCM2packet& P) {
717
718 double dx,dy,dz;
719
720 // Check validity and packet type
721
722 validMsg = (P.valid());
723 if (!validMsg) return;
724
725 validMsg = (P.ID()==24);
726 if (!validMsg) return;
727
728 // System indicator
729
730 isGPS = (P.getUnsignedBits(118,1)==0);
731 isGLONASS = (P.getUnsignedBits(118,1)==1);
732
733 // Antenna reference point coordinates
734
735 x = 64.0*P.getBits( 0,32);
736 y = 64.0*P.getBits(40,32);
737 z = 64.0*P.getBits(80,32);
738 dx = P.getUnsignedBits( 32,6);
739 dy = P.getUnsignedBits( 72,6);
740 dz = P.getUnsignedBits(112,6);
741 x = 0.0001*( x + (x<0? -dx:+dx) );
742 y = 0.0001*( y + (y<0? -dy:+dy) );
743 z = 0.0001*( z + (z<0? -dz:+dz) );
744
745 // Antenna Height
746
747 if (P.getUnsignedBits(119,1)==1) {
748 h= P.getUnsignedBits(120,18)*0.0001;
749 };
750
751
752};
753
754
755//------------------------------------------------------------------------------
756//
757// RTCM2_Obs (class definition)
758//
759// Purpose:
760//
761// A class for handling blocks of RTCM2 18 & 19 packets that need to be
762// combined to get a complete set of measurements
763//
764// Notes:
765//
766// The class collects L1/L2 code and phase measurements for GPS and GLONASS.
767// Since the Multiple Message Indicator is inconsistently handled by various
768// receivers we simply require code and phase on L1 and L2 for a complete
769// set ob observations at a given epoch. GLONASS observations are optional,
770// but all four types (code+phase,L1+L2) must be provided, if at least one
771// is given. Also, the GLONASS message must follow the corresponding GPS
772// message.
773//
774//------------------------------------------------------------------------------
775
776// Constructor
777
778RTCM2_Obs::RTCM2_Obs() {
779
780 clear();
781
782};
783
784// Reset entire block
785
786void RTCM2_Obs::clear() {
787
788 secs=0.0; // Seconds of hour (GPS time)
789 nSat=0; // Number of space vehicles
790 PRN.resize(0); // Pseudorange [m]
791 rng_C1.resize(0); // Pseudorange [m]
792 rng_P1.resize(0); // Pseudorange [m]
793 rng_P2.resize(0); // Pseudorange [m]
794 cph_L1.resize(0); // Carrier phase [m]
795 cph_L2.resize(0); // Carrier phase [m]
796
797 availability.reset(); // Message status flags
798
799};
800
801// Availability checks
802
803bool RTCM2_Obs::anyGPS() const {
804
805 return availability.test(bit_L1rngGPS) ||
806 availability.test(bit_L2rngGPS) ||
807 availability.test(bit_L1cphGPS) ||
808 availability.test(bit_L2cphGPS);
809
810};
811
812bool RTCM2_Obs::anyGLONASS() const {
813
814 return availability.test(bit_L1rngGLO) ||
815 availability.test(bit_L2rngGLO) ||
816 availability.test(bit_L1cphGLO) ||
817 availability.test(bit_L2cphGLO);
818
819};
820
821bool RTCM2_Obs::allGPS() const {
822
823 return availability.test(bit_L1rngGPS) &&
824 availability.test(bit_L2rngGPS) &&
825 availability.test(bit_L1cphGPS) &&
826 availability.test(bit_L2cphGPS);
827
828};
829
830bool RTCM2_Obs::allGLONASS() const {
831
832 return availability.test(bit_L1rngGLO) &&
833 availability.test(bit_L2rngGLO) &&
834 availability.test(bit_L1cphGLO) &&
835 availability.test(bit_L2cphGLO);
836
837};
838
839// Validity
840
841bool RTCM2_Obs::valid() const {
842
843 return ( allGPS() && (allGLONASS() || !anyGLONASS()) );
844
845};
846
847
848//
849// Extract RTCM2 18 & 19 messages and store relevant data for future use
850//
851
852void RTCM2_Obs::extract(const RTCM2packet& P) {
853
854 bool isGPS,isCAcode,isL1,isOth;
855 int NSat,idx;
856 int sid,prn;
857 double t,rng,cph;
858
859 // Check validity and packet type
860
861 if (!P.valid()) return;
862
863 // Clear previous data if block was already complete
864
865 if (valid()) clear();
866
867 // Process carrier phase message
868
869 if ( P.ID()==18 ) {
870
871 // Number of satellites in current message
872 NSat = (P.nDataWords()-1)/2;
873
874 // Current epoch (mod 3600 sec)
875 t = 0.6*P.modZCount()
876 + P.getUnsignedBits(4,20)*1.0e-6;
877
878 // Frequency (exit if neither L1 nor L2)
879 isL1 = ( P.getUnsignedBits(0,1)==0 );
880 isOth = ( P.getUnsignedBits(1,1)==1 );
881 if (isOth) return;
882
883 // Constellation (for first satellite in message)
884 isGPS = ( P.getUnsignedBits(26,1)==0 );
885
886 // Multiple Message Indicator (only checked for first satellite)
887 // pendingMsg = ( P.getUnsignedBits(24,1)==1 );
888
889 // Handle epoch: store epoch of first GPS message and
890 // check consistency of subsequent messages. GLONASS time tags
891 // are different and have to be ignored
892 if (isGPS) {
893 if ( nSat==0 ) {
894 secs = t; // Store epoch
895 }
896 else if (t!=secs) {
897 clear(); secs = t; // Clear all data, then store epoch
898 };
899 };
900
901 // Discard GLONASS obseravtions if no prior GPS observations
902 // are available
903 if (!isGPS && !anyGPS() ) return;
904
905 // Set availability flags
906
907 if ( isL1 && isGPS) availability.set(bit_L1cphGPS);
908 if (!isL1 && isGPS) availability.set(bit_L2cphGPS);
909 if ( isL1 && !isGPS) availability.set(bit_L1cphGLO);
910 if (!isL1 && !isGPS) availability.set(bit_L2cphGLO);
911
912 // Process all satellites
913
914 for (int iSat=0;iSat<NSat;iSat++){
915
916 // Code type
917 isCAcode = ( P.getUnsignedBits(iSat*48+25,1)==0 );
918
919 // Satellite
920 sid = P.getUnsignedBits(iSat*48+27,5);
921 prn = (isGPS? sid : sid+200 );
922
923 // Carrier phase measurement (mod 2^23 [cy]; sign matched to range)
924 cph = -P.getBits(iSat*48+40,32)/256.0;
925
926 // Is this a new PRN?
927 idx=-1;
928 for (unsigned int i=0;i<PRN.size();i++) {
929 if (PRN[i]==prn) { idx=i; break; };
930 };
931 if (idx==-1) {
932 // Insert new sat at end of list
933 nSat++; idx = nSat-1;
934 PRN.push_back(prn);
935 rng_C1.push_back(0.0);
936 rng_P1.push_back(0.0);
937 rng_P2.push_back(0.0);
938 cph_L1.push_back(0.0);
939 cph_L2.push_back(0.0);
940 };
941
942 // Store measurement
943 if (isL1) {
944 cph_L1[idx] = cph;
945 }
946 else {
947 cph_L2[idx] = cph;
948 };
949
950 };
951
952 };
953
954
955 // Process pseudorange message
956
957 if ( P.ID()==19 ) {
958
959 // Number of satellites in current message
960 NSat = (P.nDataWords()-1)/2;
961
962 // Current epoch (mod 3600 sec)
963 t = 0.6*P.modZCount()
964 + P.getUnsignedBits(4,20)*1.0e-6;
965
966 // Frequency (exit if neither L1 nor L2)
967 isL1 = ( P.getUnsignedBits(0,1)==0 );
968 isOth = ( P.getUnsignedBits(1,1)==1 );
969 if (isOth) return;
970
971 // Constellation (for first satellite in message)
972 isGPS = ( P.getUnsignedBits(26,1)==0 );
973
974 // Multiple Message Indicator (only checked for first satellite)
975 // pendingMsg = ( P.getUnsignedBits(24,1)==1 );
976
977 // Handle epoch: store epoch of first GPS message and
978 // check consistency of subsequent messages. GLONASS time tags
979 // are different and have to be ignored
980 if (isGPS) {
981 if ( nSat==0 ) {
982 secs = t; // Store epoch
983 }
984 else if (t!=secs) {
985 clear(); secs = t; // Clear all data, then store epoch
986 };
987 };
988
989 // Discard GLONASS obseravtions if nor prior GPS observations
990 // are available
991 if (!isGPS && !anyGPS() ) return;
992
993 // Set availability flags
994 if ( isL1 && isGPS) availability.set(bit_L1rngGPS);
995 if (!isL1 && isGPS) availability.set(bit_L2rngGPS);
996 if ( isL1 && !isGPS) availability.set(bit_L1rngGLO);
997 if (!isL1 && !isGPS) availability.set(bit_L2rngGLO);
998
999 // Process all satellites
1000
1001 for (int iSat=0;iSat<NSat;iSat++){
1002
1003 // Code type
1004 isCAcode = ( P.getUnsignedBits(iSat*48+25,1)==0 );
1005
1006 // Satellite
1007 sid = P.getUnsignedBits(iSat*48+27,5);
1008 prn = (isGPS? sid : sid+200 );
1009
1010 // Pseudorange measurement [m]
1011 rng = P.getUnsignedBits(iSat*48+40,32)*0.02;
1012
1013 // Is this a new PRN?
1014 idx=-1;
1015 for (unsigned int i=0;i<PRN.size();i++) {
1016 if (PRN[i]==prn) { idx=i; break; };
1017 };
1018 if (idx==-1) {
1019 // Insert new sat at end of list
1020 nSat++; idx = nSat-1;
1021 PRN.push_back(prn);
1022 rng_C1.push_back(0.0);
1023 rng_P1.push_back(0.0);
1024 rng_P2.push_back(0.0);
1025 cph_L1.push_back(0.0);
1026 cph_L2.push_back(0.0);
1027 };
1028
1029 // Store measurement
1030 if (isL1) {
1031 if (isCAcode) rng_C1[idx] = rng;
1032 rng_P1[idx] = rng;
1033 }
1034 else {
1035 rng_P2[idx] = rng;
1036 };
1037
1038 };
1039
1040 };
1041
1042};
1043
1044//
1045// Resolution of 2^24 cy carrier phase ambiguity
1046// caused by 32-bit data field restrictions
1047//
1048// Note: the RTCM standard specifies an ambiguity of +/-2^23 cy.
1049// However, numerous receivers generate data in the +/-2^22 cy range.
1050// A reduced ambiguity of 2^23 cy appears compatible with both cases.
1051//
1052
1053double RTCM2_Obs::resolvedPhase_L1(int i) const {
1054
1055//const double ambig = pow(2.0,24); // as per RTCM2 spec
1056 const double ambig = pow(2.0,23); // used by many receivers
1057
1058 double rng;
1059 double n;
1060
1061 if (!valid() || i<0 || i>nSat-1) return 0.0;
1062
1063 rng = rng_C1[i];
1064 if (rng==0.0) rng = rng_P1[i];
1065 if (rng==0.0) return 0.0;
1066
1067 n = floor( (rng/lambda_L1-cph_L1[i]) / ambig + 0.5 );
1068
1069 return cph_L1[i] + n*ambig;
1070
1071};
1072
1073double RTCM2_Obs::resolvedPhase_L2(int i) const {
1074
1075//const double ambig = pow(2.0,24); // as per RTCM2 spec
1076 const double ambig = pow(2.0,23); // used by many receivers
1077
1078 double rng;
1079 double n;
1080
1081 if (!valid() || i<0 || i>nSat-1) return 0.0;
1082
1083 rng = rng_C1[i];
1084 if (rng==0.0) rng = rng_P1[i];
1085 if (rng==0.0) return 0.0;
1086
1087 n = floor( (rng/lambda_L2-cph_L2[i]) / ambig + 0.5 );
1088
1089 return cph_L2[i] + n*ambig;
1090
1091};
1092
1093//
1094// Resolution of epoch using reference date (GPS week and secs)
1095//
1096
1097void RTCM2_Obs::resolveEpoch (int refWeek, double refSecs,
1098 int& epochWeek, double& epochSecs ) const {
1099
1100 const double secsPerWeek = 604800.0;
1101
1102 epochWeek = refWeek;
1103 epochSecs = secs + 3600.0*(floor((refSecs-secs)/3600.0+0.5));
1104
1105 if (epochSecs<0 ) { epochWeek--; epochSecs+=secsPerWeek; };
1106 if (epochSecs>secsPerWeek) { epochWeek++; epochSecs-=secsPerWeek; };
1107
1108};
1109
1110}; // End of namespace rtcm2
Note: See TracBrowser for help on using the repository browser.