[206] | 1 | //------------------------------------------------------------------------------
|
---|
| 2 | //
|
---|
| 3 | // RTCM2.cpp
|
---|
| 4 | //
|
---|
| 5 | // Purpose:
|
---|
| 6 | //
|
---|
| 7 | // Module for extraction of RTCM2 messages
|
---|
| 8 | //
|
---|
[254] | 9 | // References:
|
---|
| 10 | //
|
---|
| 11 | // RTCM 10402.3 Recommended Standards for Differential GNSS (Global
|
---|
| 12 | // Navigation Satellite Systems) Service; RTCM Paper 136-2001/SC104-STD,
|
---|
| 13 | // Version 2.3, 20 Aug. 2001; Radio Technical Commission For Maritime
|
---|
| 14 | // Services, Alexandria, Virgina (2001).
|
---|
| 15 | // ICD-GPS-200; Navstar GPS Space Segment / Navigation User Interfaces;
|
---|
| 16 | // Revison C; 25 Sept. 1997; Arinc Research Corp., El Segundo (1997).
|
---|
| 17 | // Jensen M.; RTCM2ASC Documentation;
|
---|
| 18 | // URL http://kom.aau.dk/~borre/masters/receiver/rtcm2asc.htm;
|
---|
| 19 | // last accessed 17 Sep. 2006
|
---|
| 20 | // Sager J.; Decoder for RTCM SC-104 data from a DGPS beacon receiver;
|
---|
| 21 | // URL http://www.wsrcc.com/wolfgang/ftp/rtcm-0.3.tar.gz;
|
---|
| 22 | // last accessed 17 Sep. 2006
|
---|
| 23 | //
|
---|
[206] | 24 | // Notes:
|
---|
| 25 | //
|
---|
| 26 | // - The host computer is assumed to use little endian (Intel) byte order
|
---|
| 27 | //
|
---|
| 28 | // Last modified:
|
---|
| 29 | //
|
---|
| 30 | // 2006/09/17 OMO Created
|
---|
| 31 | // 2006/09/19 OMO Fixed getHeader() methods
|
---|
| 32 | // 2006/09/21 OMO Reduced phase ambiguity to 2^23 cycles
|
---|
[242] | 33 | // 2006/10/05 OMO Specified const'ness of various member functions
|
---|
| 34 | // 2006/10/13 LMV Fixed resolvedPhase to handle missing C1 range
|
---|
[253] | 35 | // 2006/10/14 LMV Fixed loop cunter in ThirtyBitWord
|
---|
| 36 | // 2006/10/14 LMV Exception handling
|
---|
| 37 | // 2006/10/17 OMO Removed obsolete check of multiple message indicator
|
---|
[254] | 38 | // 2006/10/17 OMO Fixed parity handling
|
---|
[332] | 39 | // 2006/10/18 OMO Improved screening of bad data in RTCM2_Obs::extract
|
---|
| 40 | // 2006/11/25 OMO Revised check for presence of GLONASS data
|
---|
[464] | 41 | // 2007/05/25 GW Round time tag to 100 ms
|
---|
[706] | 42 | // 2007/12/11 AHA Changed handling of C/A- and P-Code on L1
|
---|
| 43 | // 2007/12/13 AHA Changed epoch comparison in packet extraction
|
---|
| 44 | // 2008/03/01 OMO Compilation flag for epoch rounding
|
---|
| 45 | // 2008/03/04 AHA Fixed problems with PRN 32
|
---|
[707] | 46 | // 2008/03/05 AHA Implemeted fix for Trimble 4000SSI receivers
|
---|
[725] | 47 | // 2008/03/07 AHA Major revision of input buffer handling
|
---|
| 48 | // 2008/03/07 AHA Removed unnecessary failure flag
|
---|
| 49 | // 2008/03/10 AHA Corrected extraction of antenna serial number
|
---|
| 50 | // 2008/03/10 AHA Corrected buffer length check in getPacket()
|
---|
| 51 | // 2008/03/11 AHA isGPS-flag in RTCM2_Obs is now set to false on clear()
|
---|
[1105] | 52 | // 2008/03/14 AHA Added checks for data consistency in extraction routines
|
---|
| 53 | // 2008/09/01 AHA Harmonization with newest BNC version
|
---|
[206] | 54 | //
|
---|
| 55 | // (c) DLR/GSOC
|
---|
| 56 | //
|
---|
| 57 | //------------------------------------------------------------------------------
|
---|
| 58 |
|
---|
[254] | 59 | #include <bitset>
|
---|
[206] | 60 | #include <cmath>
|
---|
| 61 | #include <fstream>
|
---|
| 62 | #include <iomanip>
|
---|
| 63 | #include <iostream>
|
---|
| 64 | #include <string>
|
---|
| 65 | #include <vector>
|
---|
| 66 |
|
---|
| 67 | #include "RTCM2.h"
|
---|
| 68 |
|
---|
[254] | 69 | // Activate (1) or deactivate (0) debug output for tracing parity errors and
|
---|
| 70 | // undersized packets in get(Unsigned)Bits
|
---|
[242] | 71 |
|
---|
[725] | 72 | #define DEBUG 0
|
---|
[254] | 73 |
|
---|
[706] | 74 | // Activate (1) or deactivate (0) rounding of measurement epochs to 100ms
|
---|
| 75 | //
|
---|
| 76 | // Note: A need to round the measurement epoch to integer tenths of a second was
|
---|
| 77 | // noted by BKG in the processing of RTCM2 data from various receivers in NTRIP
|
---|
| 78 | // real-time networks. It is unclear at present, whether this is due to an
|
---|
| 79 | // improper implementation of the RTCM2 standard in the respective receivers
|
---|
| 80 | // or an unclear formulation of the standard.
|
---|
| 81 |
|
---|
[707] | 82 | #define ROUND_EPOCH 1
|
---|
[706] | 83 |
|
---|
[707] | 84 | // Fix for data streams originating from TRIMBLE_4000SSI receivers.
|
---|
| 85 | // GPS PRN32 is erroneously flagged as GLONASS satellite in the C/A
|
---|
| 86 | // pseudorange messages. We therefore use a majority voting to
|
---|
| 87 | // determine the true constellation for this message.
|
---|
| 88 | // This fix is only required for Trimble4000SSI receivers but can also
|
---|
| 89 | // be used with all other known receivers.
|
---|
[706] | 90 |
|
---|
[707] | 91 | #define FIX_TRIMBLE_4000SSI 1
|
---|
| 92 |
|
---|
[206] | 93 | using namespace std;
|
---|
| 94 |
|
---|
| 95 |
|
---|
| 96 | // GPS constants
|
---|
| 97 |
|
---|
| 98 | const double c_light = 299792458.0; // Speed of light [m/s]; IAU 1976
|
---|
| 99 | const double f_L1 = 1575.42e6; // L1 frequency [Hz] (10.23MHz*154)
|
---|
| 100 | const double f_L2 = 1227.60e6; // L2 frequency [Hz] (10.23MHz*120)
|
---|
| 101 |
|
---|
| 102 | const double lambda_L1 = c_light/f_L1; // L1 wavelength [m] (0.1903m)
|
---|
| 103 | const double lambda_L2 = c_light/f_L2; // L2 wavelength [m]
|
---|
| 104 |
|
---|
| 105 | //
|
---|
| 106 | // Bits for message availability checks
|
---|
| 107 | //
|
---|
| 108 |
|
---|
| 109 | const int bit_L1rngGPS = 0;
|
---|
| 110 | const int bit_L2rngGPS = 1;
|
---|
| 111 | const int bit_L1cphGPS = 2;
|
---|
| 112 | const int bit_L2cphGPS = 3;
|
---|
| 113 | const int bit_L1rngGLO = 4;
|
---|
| 114 | const int bit_L2rngGLO = 5;
|
---|
| 115 | const int bit_L1cphGLO = 6;
|
---|
| 116 | const int bit_L2cphGLO = 7;
|
---|
| 117 |
|
---|
| 118 |
|
---|
| 119 | //
|
---|
| 120 | // namespace rtcm2
|
---|
| 121 | //
|
---|
| 122 |
|
---|
| 123 | namespace rtcm2 {
|
---|
[725] | 124 |
|
---|
[206] | 125 | //------------------------------------------------------------------------------
|
---|
| 126 | //
|
---|
| 127 | // class ThirtyBitWord (implementation)
|
---|
| 128 | //
|
---|
| 129 | // Purpose:
|
---|
| 130 | //
|
---|
| 131 | // Handling of RTCM2 30bit words
|
---|
| 132 | //
|
---|
| 133 | //------------------------------------------------------------------------------
|
---|
| 134 |
|
---|
| 135 | // Constructor
|
---|
| 136 |
|
---|
| 137 | ThirtyBitWord::ThirtyBitWord() : W(0) {
|
---|
| 138 | };
|
---|
| 139 |
|
---|
| 140 | // Clear entire 30-bit word and 2-bit parity from previous word
|
---|
| 141 |
|
---|
| 142 | void ThirtyBitWord::clear() {
|
---|
| 143 | W = 0;
|
---|
| 144 | };
|
---|
| 145 |
|
---|
| 146 | // Parity check
|
---|
| 147 |
|
---|
| 148 | bool ThirtyBitWord::validParity() const {
|
---|
| 149 |
|
---|
| 150 | // Parity stuff
|
---|
| 151 |
|
---|
| 152 | static const unsigned int PARITY_25 = 0xBB1F3480;
|
---|
| 153 | static const unsigned int PARITY_26 = 0x5D8F9A40;
|
---|
| 154 | static const unsigned int PARITY_27 = 0xAEC7CD00;
|
---|
| 155 | static const unsigned int PARITY_28 = 0x5763E680;
|
---|
| 156 | static const unsigned int PARITY_29 = 0x6BB1F340;
|
---|
| 157 | static const unsigned int PARITY_30 = 0x8B7A89C0;
|
---|
| 158 |
|
---|
| 159 | // Look-up table for parity of eight bit bytes
|
---|
| 160 | // (parity=0 if the number of 0s and 1s is equal, else parity=1)
|
---|
| 161 | static unsigned char byteParity[] = {
|
---|
| 162 | 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
|
---|
| 163 | 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
|
---|
| 164 | 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
|
---|
| 165 | 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
|
---|
| 166 | 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
|
---|
| 167 | 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
|
---|
| 168 | 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
|
---|
| 169 | 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0
|
---|
| 170 | };
|
---|
| 171 |
|
---|
| 172 | // Local variables
|
---|
| 173 |
|
---|
| 174 | unsigned int t, w, p;
|
---|
| 175 |
|
---|
| 176 | // The sign of the data is determined by the D30* parity bit
|
---|
| 177 | // of the previous data word. If D30* is set, invert the data
|
---|
| 178 | // bits D01..D24 to obtain the d01..d24 (but leave all other
|
---|
| 179 | // bits untouched).
|
---|
| 180 |
|
---|
| 181 | w = W;
|
---|
| 182 | if ( w & 0x40000000 ) w ^= 0x3FFFFFC0;
|
---|
| 183 |
|
---|
| 184 | // Compute the parity of the sign corrected data bits d01..d24
|
---|
| 185 | // as described in the ICD-GPS-200
|
---|
| 186 |
|
---|
| 187 | t = w & PARITY_25;
|
---|
| 188 | p = ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
|
---|
| 189 | byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
|
---|
| 190 |
|
---|
| 191 | t = w & PARITY_26;
|
---|
| 192 | p = (p<<1) |
|
---|
| 193 | ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
|
---|
| 194 | byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
|
---|
| 195 |
|
---|
| 196 | t = w & PARITY_27;
|
---|
| 197 | p = (p<<1) |
|
---|
| 198 | ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
|
---|
| 199 | byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
|
---|
| 200 |
|
---|
| 201 | t = w & PARITY_28;
|
---|
| 202 | p = (p<<1) |
|
---|
| 203 | ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
|
---|
| 204 | byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
|
---|
| 205 |
|
---|
| 206 | t = w & PARITY_29;
|
---|
| 207 | p = (p<<1) |
|
---|
| 208 | ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
|
---|
| 209 | byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
|
---|
| 210 |
|
---|
| 211 | t = w & PARITY_30;
|
---|
| 212 | p = (p<<1) |
|
---|
| 213 | ( byteParity[t &0xff] ^ byteParity[(t>> 8)&0xff] ^
|
---|
| 214 | byteParity[(t>>16)&0xff] ^ byteParity[(t>>24) ] );
|
---|
| 215 |
|
---|
[254] | 216 | return ( (W & 0x3f) == p);
|
---|
[206] | 217 |
|
---|
| 218 | };
|
---|
| 219 |
|
---|
| 220 |
|
---|
| 221 | // Check preamble
|
---|
| 222 |
|
---|
| 223 | bool ThirtyBitWord::isHeader() const {
|
---|
| 224 |
|
---|
| 225 | const unsigned char Preamble = 0x66;
|
---|
| 226 |
|
---|
| 227 | unsigned char b = (value()>>22) & 0xFF;
|
---|
| 228 |
|
---|
| 229 | return ( b==Preamble );
|
---|
| 230 |
|
---|
| 231 | };
|
---|
| 232 |
|
---|
| 233 |
|
---|
| 234 | // Return entire 32-bit (current word and previous parity)
|
---|
| 235 |
|
---|
| 236 | unsigned int ThirtyBitWord::all() const {
|
---|
| 237 | return W;
|
---|
| 238 | };
|
---|
| 239 |
|
---|
| 240 |
|
---|
| 241 | // Return sign-corrected 30-bit (or zero if parity mismatch)
|
---|
| 242 |
|
---|
| 243 | unsigned int ThirtyBitWord::value() const {
|
---|
| 244 |
|
---|
| 245 | unsigned int w = W;
|
---|
| 246 |
|
---|
| 247 | if (validParity()) {
|
---|
| 248 | // Return data and current parity bits. Invert data bits if D30*
|
---|
| 249 | // is set and discard old parity bits.
|
---|
| 250 | if ( w & 0x40000000 ) w ^= 0x3FFFFFC0;
|
---|
| 251 | return (w & 0x3FFFFFFF);
|
---|
| 252 | }
|
---|
| 253 | else {
|
---|
| 254 | // Error; invalid parity
|
---|
| 255 | return 0;
|
---|
| 256 | };
|
---|
| 257 |
|
---|
| 258 | };
|
---|
| 259 |
|
---|
| 260 |
|
---|
| 261 | // Append a byte with six data bits
|
---|
| 262 |
|
---|
| 263 | void ThirtyBitWord::append(unsigned char b) {
|
---|
| 264 |
|
---|
| 265 | // Look up table for swap (left-right) of 6 data bits
|
---|
| 266 | static const unsigned char
|
---|
| 267 | swap[] = {
|
---|
| 268 | 0,32,16,48, 8,40,24,56, 4,36,20,52,12,44,28,60,
|
---|
| 269 | 2,34,18,50,10,42,26,58, 6,38,22,54,14,46,30,62,
|
---|
| 270 | 1,33,17,49, 9,41,25,57, 5,37,21,53,13,45,29,61,
|
---|
| 271 | 3,35,19,51,11,43,27,59, 7,39,23,55,15,47,31,63
|
---|
| 272 | };
|
---|
| 273 |
|
---|
| 274 | // Bits 7 and 6 (of 0..7) must be "01" for valid data bytes
|
---|
| 275 | if ( (b & 0x40) != 0x40 ) {
|
---|
[725] | 276 | // We simply skip the invalid input byte and leave the word unchanged
|
---|
| 277 | #if (DEBUG>0)
|
---|
| 278 | cerr << "Error in append()" << bitset<32>(all()) << endl;
|
---|
| 279 | #endif
|
---|
[206] | 280 | return;
|
---|
| 281 | };
|
---|
| 282 |
|
---|
| 283 | // Swap bits 0..5 to restore proper bit order for 30bit words
|
---|
| 284 | b = swap[ b & 0x3f];
|
---|
| 285 |
|
---|
| 286 | // Fill word
|
---|
| 287 | W = ( (W <<6) | (b & 0x3f) ) ;
|
---|
| 288 |
|
---|
| 289 | };
|
---|
| 290 |
|
---|
| 291 |
|
---|
| 292 | // Get next 30bit word from string
|
---|
| 293 |
|
---|
[725] | 294 | void ThirtyBitWord::get(const string& buf) {
|
---|
[206] | 295 |
|
---|
| 296 | // Check if string is long enough
|
---|
| 297 |
|
---|
| 298 | if (buf.size()<5) {
|
---|
[728] | 299 | // Ignore; users should avoid this case prior to calling get()
|
---|
| 300 |
|
---|
[725] | 301 | #if ( DEBUG > 0 )
|
---|
| 302 | cerr << "Error in get(): packet too short (" << buf.size() <<")" << endl;
|
---|
| 303 | #endif
|
---|
[728] | 304 |
|
---|
[206] | 305 | return;
|
---|
| 306 | };
|
---|
| 307 |
|
---|
[725] | 308 | // Process 5 bytes
|
---|
[206] | 309 |
|
---|
| 310 | for (int i=0; i<5; i++) append(buf[i]);
|
---|
| 311 |
|
---|
[254] | 312 | #if (DEBUG>0)
|
---|
| 313 | if (!validParity()) {
|
---|
[725] | 314 | cerr << "Parity error in get()"
|
---|
[254] | 315 | << bitset<32>(all()) << endl;
|
---|
| 316 | };
|
---|
| 317 | #endif
|
---|
[206] | 318 |
|
---|
| 319 | };
|
---|
| 320 |
|
---|
| 321 | // Get next 30bit word from file
|
---|
| 322 |
|
---|
| 323 | void ThirtyBitWord::get(istream& inp) {
|
---|
| 324 |
|
---|
| 325 | unsigned char b;
|
---|
| 326 |
|
---|
| 327 | for (int i=0; i<5; i++) {
|
---|
| 328 | inp >> b;
|
---|
| 329 | if (inp.fail()) { clear(); return; };
|
---|
| 330 | append(b);
|
---|
| 331 | };
|
---|
| 332 |
|
---|
[254] | 333 | #if (DEBUG>0)
|
---|
| 334 | if (!validParity()) {
|
---|
[725] | 335 | cerr << "Parity error in get()"
|
---|
[254] | 336 | << bitset<32>(all()) << endl;
|
---|
| 337 | };
|
---|
| 338 | #endif
|
---|
[206] | 339 |
|
---|
| 340 | };
|
---|
| 341 |
|
---|
| 342 | // Get next header word from string
|
---|
| 343 |
|
---|
| 344 | void ThirtyBitWord::getHeader(string& buf) {
|
---|
| 345 |
|
---|
[728] | 346 | const unsigned int wordLen = 5; // Number of bytes representing a 30-bit word
|
---|
| 347 | const unsigned int spare = 1; // Number of spare words for resync of parity
|
---|
| 348 | // (same value as inRTCM2packet::getPacket())
|
---|
[206] | 349 | unsigned int i;
|
---|
| 350 |
|
---|
| 351 | i=0;
|
---|
[728] | 352 | // append spare word (to get correct parity) and first consecutive word
|
---|
| 353 | while (i<(spare+1)*wordLen) {
|
---|
| 354 | // Process byte
|
---|
| 355 | append(buf[i]);
|
---|
| 356 | // Increment count
|
---|
| 357 | i++;
|
---|
| 358 | };
|
---|
| 359 |
|
---|
| 360 | // start searching for preamble in first word after spare word
|
---|
[725] | 361 | while (!isHeader() && i<buf.size() ) {
|
---|
[206] | 362 | // Process byte
|
---|
[725] | 363 | append(buf[i]);
|
---|
| 364 | // Increment count
|
---|
| 365 | i++;
|
---|
[206] | 366 | };
|
---|
| 367 |
|
---|
[725] | 368 | // Remove processed bytes from buffer. Retain also the previous word to
|
---|
| 369 | // allow a resync if getHeader() is called repeatedly on the same buffer.
|
---|
| 370 | if (i>=(1+spare)*wordLen) buf.erase(0,i-(1+spare)*wordLen);
|
---|
[206] | 371 |
|
---|
[254] | 372 | #if (DEBUG>0)
|
---|
| 373 | if (!validParity()) {
|
---|
[725] | 374 | cerr << "Parity error in getHeader()"
|
---|
[254] | 375 | << bitset<32>(all()) << endl;
|
---|
| 376 | };
|
---|
| 377 | #endif
|
---|
[725] | 378 |
|
---|
[206] | 379 | };
|
---|
| 380 |
|
---|
| 381 | // Get next header word from file
|
---|
| 382 |
|
---|
| 383 | void ThirtyBitWord::getHeader(istream& inp) {
|
---|
| 384 |
|
---|
| 385 | unsigned char b;
|
---|
| 386 | unsigned int i;
|
---|
| 387 |
|
---|
| 388 | i=0;
|
---|
| 389 | while ( !isHeader() || i<5 ) {
|
---|
| 390 | inp >> b;
|
---|
| 391 | if (inp.fail()) { clear(); return; };
|
---|
| 392 | append(b); i++;
|
---|
| 393 | };
|
---|
| 394 |
|
---|
[254] | 395 | #if (DEBUG>0)
|
---|
| 396 | if (!validParity()) {
|
---|
[725] | 397 | cerr << "Parity error in getHeader()"
|
---|
[254] | 398 | << bitset<32>(all()) << endl;
|
---|
| 399 | };
|
---|
| 400 | #endif
|
---|
[206] | 401 |
|
---|
| 402 | };
|
---|
| 403 |
|
---|
| 404 |
|
---|
| 405 | //------------------------------------------------------------------------------
|
---|
| 406 | //
|
---|
| 407 | // RTCM2packet (class implementation)
|
---|
| 408 | //
|
---|
| 409 | // Purpose:
|
---|
| 410 | //
|
---|
| 411 | // A class for handling RTCM2 data packets
|
---|
| 412 | //
|
---|
| 413 | //------------------------------------------------------------------------------
|
---|
| 414 |
|
---|
| 415 | // Constructor
|
---|
| 416 |
|
---|
| 417 | RTCM2packet::RTCM2packet() {
|
---|
| 418 | clear();
|
---|
| 419 | };
|
---|
| 420 |
|
---|
| 421 | // Initialization
|
---|
| 422 |
|
---|
| 423 | void RTCM2packet::clear() {
|
---|
| 424 |
|
---|
| 425 | W.clear();
|
---|
| 426 |
|
---|
| 427 | H1=0;
|
---|
| 428 | H2=0;
|
---|
| 429 |
|
---|
| 430 | DW.resize(0,0);
|
---|
| 431 |
|
---|
| 432 | };
|
---|
| 433 |
|
---|
| 434 | // Complete packet, valid parity
|
---|
| 435 |
|
---|
| 436 | bool RTCM2packet::valid() const {
|
---|
| 437 |
|
---|
| 438 | // The methods for creating a packet (get,">>") ensure
|
---|
| 439 | // that a packet has a consistent number of data words
|
---|
| 440 | // and a valid parity in all header and data words.
|
---|
| 441 | // Therefore a packet is either empty or valid.
|
---|
| 442 |
|
---|
| 443 | return (H1!=0);
|
---|
| 444 |
|
---|
| 445 | };
|
---|
| 446 |
|
---|
| 447 |
|
---|
| 448 | //
|
---|
| 449 | // Gets the next packet from the buffer
|
---|
| 450 | //
|
---|
| 451 |
|
---|
| 452 | void RTCM2packet::getPacket(std::string& buf) {
|
---|
| 453 |
|
---|
[725] | 454 | const int wordLen = 5; // Number of bytes representing a 30-bit word
|
---|
| 455 | const int spare = 1; // Number of spare words for resync of parity
|
---|
| 456 | // (same value as used in ThirtyBitWord::getHeader)
|
---|
| 457 | unsigned int n;
|
---|
[206] | 458 |
|
---|
[728] | 459 | // Does the package content at least spare bytes and first header byte?
|
---|
| 460 | if (buf.size()<(spare+1)*wordLen) {
|
---|
| 461 | clear();
|
---|
| 462 | return;
|
---|
| 463 | };
|
---|
| 464 |
|
---|
[725] | 465 | // Try to read a full packet. Processed bytes are removed from the input
|
---|
| 466 | // buffer except for the latest spare*wordLen bytes to restore the parity
|
---|
[728] | 467 | // bytes upon subseqeunt calls of getPacket().
|
---|
[206] | 468 |
|
---|
[725] | 469 | // Locate and read the first header word
|
---|
| 470 | W.getHeader(buf);
|
---|
| 471 | if (!W.isHeader()) {
|
---|
| 472 | // No header found; try again next time. buf retains only the spare
|
---|
| 473 | // words. The packet contents is cleared to indicate an unsuccessful
|
---|
| 474 | // termination of getPacket().
|
---|
| 475 | clear();
|
---|
[728] | 476 |
|
---|
[725] | 477 | #if ( DEBUG > 0 )
|
---|
| 478 | cerr << "Error in getPacket(): W.isHeader() = false for H1" << endl;
|
---|
| 479 | #endif
|
---|
[728] | 480 |
|
---|
[725] | 481 | return;
|
---|
| 482 | };
|
---|
| 483 | H1 = W.value();
|
---|
[206] | 484 |
|
---|
[725] | 485 | // Do we have enough bytes to read the next word? If not, the packet
|
---|
| 486 | // contents is cleared to indicate an unsuccessful termination. The
|
---|
| 487 | // previously read spare and header bytes are retained in the buffer
|
---|
| 488 | // for use in the next call of getPacket().
|
---|
| 489 | if (buf.size()<(spare+2)*wordLen) {
|
---|
| 490 | clear();
|
---|
[728] | 491 |
|
---|
[725] | 492 | #if ( DEBUG > 0 )
|
---|
| 493 | cerr << "Error in getPacket(): buffer too short for complete H2" << endl;
|
---|
| 494 | #endif
|
---|
[728] | 495 |
|
---|
[725] | 496 | return;
|
---|
| 497 | };
|
---|
| 498 |
|
---|
| 499 | // Read the second header word
|
---|
| 500 | W.get(buf.substr((spare+1)*wordLen,buf.size()-(spare+1)*wordLen));
|
---|
| 501 | H2 = W.value();
|
---|
| 502 | if (!W.validParity()) {
|
---|
| 503 | // Invalid H2 word; delete first buffer byte and try to resynch next time.
|
---|
| 504 | // The packet contents is cleared to indicate an unsuccessful termination.
|
---|
| 505 | clear();
|
---|
| 506 | buf.erase(0,1);
|
---|
[728] | 507 |
|
---|
[725] | 508 | #if ( DEBUG > 0 )
|
---|
| 509 | cerr << "Error in getPacket(): W.validParity() = false for H2" << endl;
|
---|
| 510 | #endif
|
---|
[728] | 511 |
|
---|
[725] | 512 | return;
|
---|
| 513 | };
|
---|
| 514 |
|
---|
[206] | 515 | n = nDataWords();
|
---|
[728] | 516 |
|
---|
[725] | 517 | // Do we have enough bytes to read the next word? If not, the packet
|
---|
| 518 | // contents is cleared to indicate an unsuccessful termination. The
|
---|
| 519 | // previously read spare and header bytes are retained in the buffer
|
---|
| 520 | // for use in the next call of getPacket().
|
---|
| 521 | if (buf.size()<(spare+2+n)*wordLen) {
|
---|
[728] | 522 | clear();
|
---|
| 523 |
|
---|
[725] | 524 | #if ( DEBUG > 0 )
|
---|
| 525 | cerr << "Error in getPacket(): buffer too short for complete " << n
|
---|
| 526 | << " DWs" << endl;
|
---|
| 527 | #endif
|
---|
[728] | 528 |
|
---|
[725] | 529 | return;
|
---|
| 530 | };
|
---|
| 531 |
|
---|
[206] | 532 | DW.resize(n);
|
---|
[725] | 533 | for (unsigned int i=0; i<n; i++) {
|
---|
| 534 | W.get(buf.substr((spare+2+i)*wordLen,buf.size()-(spare+2+i)*wordLen));
|
---|
| 535 | DW[i] = W.value();
|
---|
| 536 | if (!W.validParity()) {
|
---|
| 537 | // Invalid data word; delete first byte and try to resynch next time.
|
---|
| 538 | // The packet contents is cleared to indicate an unsuccessful termination.
|
---|
| 539 | clear();
|
---|
| 540 | buf.erase(0,1);
|
---|
[728] | 541 |
|
---|
[725] | 542 | #if ( DEBUG > 0 )
|
---|
| 543 | cerr << "Error in getPacket(): W.validParity() = false for DW"
|
---|
| 544 | << i << endl;
|
---|
| 545 | #endif
|
---|
[728] | 546 |
|
---|
[725] | 547 | return;
|
---|
| 548 | };
|
---|
[206] | 549 | };
|
---|
| 550 |
|
---|
[725] | 551 | // Successful packet extraction; delete total number of message bytes
|
---|
| 552 | // from buffer.
|
---|
| 553 | // Note: a total of "spare" words remain in the buffer to enable a
|
---|
| 554 | // parity resynchronization when searching the next header.
|
---|
| 555 |
|
---|
| 556 | buf.erase(0,(n+2)*wordLen);
|
---|
[728] | 557 |
|
---|
[206] | 558 | return;
|
---|
| 559 |
|
---|
| 560 | };
|
---|
| 561 |
|
---|
| 562 |
|
---|
| 563 | //
|
---|
| 564 | // Gets the next packet from the input stream
|
---|
| 565 | //
|
---|
| 566 |
|
---|
| 567 | void RTCM2packet::getPacket(std::istream& inp) {
|
---|
| 568 |
|
---|
| 569 | int n;
|
---|
| 570 |
|
---|
| 571 | W.getHeader(inp);
|
---|
| 572 | H1 = W.value();
|
---|
[725] | 573 | if (inp.fail() || !W.isHeader()) { clear(); return; }
|
---|
[206] | 574 |
|
---|
| 575 | W.get(inp);
|
---|
| 576 | H2 = W.value();
|
---|
[725] | 577 | if (inp.fail() || !W.validParity()) { clear(); return; }
|
---|
[206] | 578 |
|
---|
| 579 | n = nDataWords();
|
---|
| 580 | DW.resize(n);
|
---|
| 581 | for (int i=0; i<n; i++) {
|
---|
| 582 | W.get(inp);
|
---|
| 583 | DW[i] = W.value();
|
---|
[725] | 584 | if (inp.fail() || !W.validParity()) { clear(); return; }
|
---|
[206] | 585 | };
|
---|
| 586 |
|
---|
| 587 | return;
|
---|
| 588 |
|
---|
| 589 | };
|
---|
| 590 |
|
---|
| 591 | //
|
---|
| 592 | // Input operator
|
---|
| 593 | //
|
---|
[254] | 594 | // Reads an RTCM2 packet from the input stream.
|
---|
[206] | 595 | //
|
---|
| 596 |
|
---|
| 597 | istream& operator >> (istream& is, RTCM2packet& p) {
|
---|
| 598 |
|
---|
| 599 | p.getPacket(is);
|
---|
| 600 |
|
---|
| 601 | return is;
|
---|
| 602 |
|
---|
| 603 | };
|
---|
| 604 |
|
---|
| 605 | // Access methods
|
---|
| 606 |
|
---|
| 607 | unsigned int RTCM2packet::header1() const {
|
---|
| 608 | return H1;
|
---|
| 609 | };
|
---|
| 610 |
|
---|
| 611 | unsigned int RTCM2packet::header2() const {
|
---|
| 612 | return H2;
|
---|
| 613 | };
|
---|
| 614 |
|
---|
| 615 | unsigned int RTCM2packet::dataWord(int i) const {
|
---|
| 616 | if ( (unsigned int)i < DW.size() ) {
|
---|
| 617 | return DW[i];
|
---|
| 618 | }
|
---|
| 619 | else {
|
---|
| 620 | return 0;
|
---|
| 621 | }
|
---|
| 622 | };
|
---|
| 623 |
|
---|
| 624 | unsigned int RTCM2packet::msgType() const {
|
---|
| 625 | return ( H1>>16 & 0x003F );
|
---|
| 626 | };
|
---|
| 627 |
|
---|
| 628 | unsigned int RTCM2packet::stationID() const {
|
---|
| 629 | return ( H1>> 6 & 0x03FF );
|
---|
| 630 | };
|
---|
| 631 |
|
---|
| 632 | unsigned int RTCM2packet::modZCount() const {
|
---|
| 633 | return ( H2>>17 & 0x01FFF );
|
---|
| 634 | };
|
---|
| 635 |
|
---|
| 636 | unsigned int RTCM2packet::seqNumber() const {
|
---|
| 637 | return ( H2>>14 & 0x0007 );
|
---|
| 638 | };
|
---|
| 639 |
|
---|
| 640 | unsigned int RTCM2packet::nDataWords() const {
|
---|
| 641 | return ( H2>> 9 & 0x001F );
|
---|
| 642 | };
|
---|
| 643 |
|
---|
| 644 | unsigned int RTCM2packet::staHealth() const {
|
---|
| 645 | return ( H2>> 6 & 0x0003 );
|
---|
| 646 | };
|
---|
| 647 |
|
---|
| 648 |
|
---|
| 649 | //
|
---|
| 650 | // Get unsigned bit field
|
---|
| 651 | //
|
---|
| 652 | // Bits are numbered from left (msb) to right (lsb) starting at bit 0
|
---|
| 653 | //
|
---|
| 654 |
|
---|
| 655 | unsigned int RTCM2packet::getUnsignedBits ( unsigned int start,
|
---|
| 656 | unsigned int n ) const {
|
---|
| 657 |
|
---|
| 658 | unsigned int iFirst = start/24; // Index of first data word
|
---|
| 659 | unsigned int iLast = (start+n-1)/24; // Index of last data word
|
---|
| 660 | unsigned int bitField = 0;
|
---|
| 661 | unsigned int tmp;
|
---|
| 662 |
|
---|
| 663 | // Checks
|
---|
| 664 |
|
---|
| 665 | if (n>32) {
|
---|
[249] | 666 | throw("Error: can't handle >32 bits in RTCM2packet::getUnsignedBits");
|
---|
[206] | 667 | };
|
---|
| 668 |
|
---|
| 669 | if ( 24*DW.size() < start+n-1 ) {
|
---|
[254] | 670 | #if (DEBUG>0)
|
---|
| 671 | cerr << "Debug output RTCM2packet::getUnsignedBits" << endl
|
---|
| 672 | << " P.msgType: " << setw(5) << msgType() << endl
|
---|
| 673 | << " P.nDataWords: " << setw(5) << nDataWords() << endl
|
---|
| 674 | << " start: " << setw(5) << start << endl
|
---|
| 675 | << " n: " << setw(5) << n << endl
|
---|
| 676 | << " P.H1: " << setw(5) << bitset<32>(H1) << endl
|
---|
| 677 | << " P.H2: " << setw(5) << bitset<32>(H2) << endl
|
---|
| 678 | << endl
|
---|
| 679 | << flush;
|
---|
| 680 | #endif
|
---|
[249] | 681 | throw("Error: Packet too short in RTCM2packet::getUnsignedBits");
|
---|
[206] | 682 | }
|
---|
| 683 |
|
---|
| 684 | // Handle initial data word
|
---|
| 685 | // Get all data bits. Strip parity and unwanted leading bits.
|
---|
| 686 | // Store result in 24 lsb bits of tmp.
|
---|
| 687 |
|
---|
| 688 | tmp = (DW[iFirst]>>6) & 0xFFFFFF;
|
---|
| 689 | tmp = ( ( tmp << start%24) & 0xFFFFFF ) >> start%24 ;
|
---|
| 690 |
|
---|
| 691 | // Handle central data word
|
---|
| 692 |
|
---|
| 693 | if ( iFirst<iLast ) {
|
---|
| 694 | bitField = tmp;
|
---|
| 695 | for (unsigned int iWord=iFirst+1; iWord<iLast; iWord++) {
|
---|
| 696 | tmp = (DW[iWord]>>6) & 0xFFFFFF;
|
---|
| 697 | bitField = (bitField << 24) | tmp;
|
---|
| 698 | };
|
---|
| 699 | tmp = (DW[iLast]>>6) & 0xFFFFFF;
|
---|
| 700 | };
|
---|
| 701 |
|
---|
| 702 | // Handle last data word
|
---|
| 703 |
|
---|
| 704 | tmp = tmp >> (23-(start+n-1)%24);
|
---|
| 705 | bitField = (bitField << ((start+n-1)%24+1)) | tmp;
|
---|
| 706 |
|
---|
| 707 | // Done
|
---|
| 708 |
|
---|
| 709 | return bitField;
|
---|
| 710 |
|
---|
| 711 | };
|
---|
| 712 |
|
---|
| 713 | //
|
---|
| 714 | // Get signed bit field
|
---|
| 715 | //
|
---|
| 716 | // Bits are numbered from left (msb) to right (lsb) starting at bit 0
|
---|
| 717 | //
|
---|
| 718 |
|
---|
| 719 | int RTCM2packet::getBits ( unsigned int start,
|
---|
| 720 | unsigned int n ) const {
|
---|
| 721 |
|
---|
| 722 |
|
---|
| 723 | // Checks
|
---|
| 724 |
|
---|
| 725 | if (n>32) {
|
---|
[249] | 726 | throw("Error: can't handle >32 bits in RTCM2packet::getBits");
|
---|
[206] | 727 | };
|
---|
| 728 |
|
---|
| 729 | if ( 24*DW.size() < start+n-1 ) {
|
---|
[254] | 730 | #if (DEBUG>0)
|
---|
| 731 | cerr << "Debug output RTCM2packet::getUnsignedBits" << endl
|
---|
| 732 | << " P.msgType: " << setw(5) << msgType() << endl
|
---|
| 733 | << " P.nDataWords: " << setw(5) << nDataWords() << endl
|
---|
| 734 | << " start: " << setw(5) << start << endl
|
---|
| 735 | << " n: " << setw(5) << n << endl
|
---|
| 736 | << " P.H1: " << setw(5) << bitset<32>(H1) << endl
|
---|
| 737 | << " P.H2: " << setw(5) << bitset<32>(H2) << endl
|
---|
| 738 | << endl
|
---|
| 739 | << flush;
|
---|
| 740 | #endif
|
---|
[249] | 741 | throw("Error: Packet too short in RTCM2packet::getBits");
|
---|
[206] | 742 | }
|
---|
| 743 |
|
---|
| 744 | return ((int)(getUnsignedBits(start,n)<<(32-n))>>(32-n));
|
---|
| 745 |
|
---|
| 746 | };
|
---|
| 747 |
|
---|
| 748 |
|
---|
| 749 | //------------------------------------------------------------------------------
|
---|
| 750 | //
|
---|
| 751 | // RTCM2_03 (class implementation)
|
---|
| 752 | //
|
---|
| 753 | // Purpose:
|
---|
| 754 | //
|
---|
| 755 | // A class for handling RTCM 2 GPS Reference Station Parameters messages
|
---|
| 756 | //
|
---|
| 757 | //------------------------------------------------------------------------------
|
---|
| 758 |
|
---|
[1105] | 759 | // Constructor
|
---|
| 760 | RTCM2_03::RTCM2_03(){
|
---|
| 761 | validMsg = false;
|
---|
| 762 | x = 0.0;
|
---|
| 763 | y = 0.0;
|
---|
| 764 | z=0.0;
|
---|
| 765 | };
|
---|
| 766 |
|
---|
[206] | 767 | void RTCM2_03::extract(const RTCM2packet& P) {
|
---|
| 768 |
|
---|
[725] | 769 | // Check validity, packet type and number of data words
|
---|
[206] | 770 |
|
---|
| 771 | validMsg = (P.valid());
|
---|
| 772 | if (!validMsg) return;
|
---|
| 773 |
|
---|
| 774 | validMsg = (P.ID()==03);
|
---|
| 775 | if (!validMsg) return;
|
---|
| 776 |
|
---|
[725] | 777 | validMsg = (P.nDataWords()==4);
|
---|
| 778 | if (!validMsg) return;
|
---|
| 779 |
|
---|
[206] | 780 | // Antenna reference point coordinates
|
---|
| 781 |
|
---|
| 782 | x = P.getBits( 0,32)*0.01; // X [m]
|
---|
| 783 | y = P.getBits(32,32)*0.01; // Y [m]
|
---|
| 784 | z = P.getBits(64,32)*0.01; // Z [m]
|
---|
| 785 |
|
---|
| 786 | };
|
---|
| 787 |
|
---|
| 788 | //------------------------------------------------------------------------------
|
---|
| 789 | //
|
---|
| 790 | // RTCM2_23 (class implementation)
|
---|
| 791 | //
|
---|
| 792 | // Purpose:
|
---|
| 793 | //
|
---|
| 794 | // A class for handling RTCM 2 Antenna Type Definition messages
|
---|
| 795 | //
|
---|
| 796 | //------------------------------------------------------------------------------
|
---|
| 797 |
|
---|
| 798 | void RTCM2_23::extract(const RTCM2packet& P) {
|
---|
| 799 |
|
---|
[728] | 800 | unsigned int nad, nas;
|
---|
[206] | 801 |
|
---|
[728] | 802 | const unsigned int nF1 = 8; // bits in first field (R,AF,SF,NAD)
|
---|
| 803 | const unsigned int nF2 =16; // bits in second field (SETUP ID,R,NAS)
|
---|
| 804 | const unsigned int nBits=24; // data bits in 30bit word
|
---|
[206] | 805 |
|
---|
[728] | 806 | // Check validity, packet type and number of data words
|
---|
| 807 |
|
---|
[206] | 808 | validMsg = (P.valid());
|
---|
| 809 | if (!validMsg) return;
|
---|
| 810 |
|
---|
| 811 | validMsg = (P.ID()==23);
|
---|
| 812 | if (!validMsg) return;
|
---|
[728] | 813 |
|
---|
| 814 | // Check number of data words (can nad be read in?)
|
---|
[206] | 815 |
|
---|
[728] | 816 | validMsg = (P.nDataWords()>=1);
|
---|
| 817 | if (!validMsg){
|
---|
| 818 | cerr << "RTCM2_23::extract: P.nDataWords()>=1" << endl;
|
---|
| 819 | return;
|
---|
| 820 | }
|
---|
| 821 |
|
---|
[206] | 822 | // Antenna descriptor
|
---|
| 823 | antType = "";
|
---|
| 824 | nad = P.getUnsignedBits(3,5);
|
---|
[728] | 825 |
|
---|
| 826 | // Check number of data words (can antenna description be read in?)
|
---|
| 827 | validMsg = ( P.nDataWords() >=
|
---|
| 828 | (unsigned int)ceil((nF1+nad*8)/(double)nBits) );
|
---|
[206] | 829 |
|
---|
[728] | 830 | if (!validMsg) return;
|
---|
| 831 |
|
---|
| 832 | for (unsigned int i=0;i<nad;i++)
|
---|
| 833 | antType += (char)P.getUnsignedBits(nF1+i*8,8);
|
---|
| 834 |
|
---|
[206] | 835 | // Optional antenna serial numbers
|
---|
| 836 | if (P.getUnsignedBits(2,1)==1) {
|
---|
[728] | 837 |
|
---|
| 838 | // Check number of data words (can nas be read in?)
|
---|
| 839 |
|
---|
| 840 | validMsg = ( P.nDataWords() >=
|
---|
| 841 | (unsigned int)ceil((nF1+nad*8+nF2)/(double)nBits) );
|
---|
| 842 | if (!validMsg) return;
|
---|
| 843 |
|
---|
[206] | 844 | nas = P.getUnsignedBits(19+8*nad,5);
|
---|
[728] | 845 |
|
---|
| 846 | // Check number of data words (can antenna serial number be read in?)
|
---|
| 847 |
|
---|
| 848 | validMsg = ( P.nDataWords() >=
|
---|
| 849 | (unsigned int)ceil((nF1+nad*8+nF2+nas*8)/(double)nBits) );
|
---|
| 850 | if (!validMsg) return;
|
---|
| 851 |
|
---|
[206] | 852 | antSN = "";
|
---|
[728] | 853 | for (unsigned int i=0;i<nas;i++)
|
---|
| 854 | antSN += (char)P.getUnsignedBits(nF1+8*nad+nF2+i*8,8);
|
---|
[206] | 855 | };
|
---|
| 856 |
|
---|
| 857 | };
|
---|
| 858 |
|
---|
| 859 |
|
---|
| 860 | //------------------------------------------------------------------------------
|
---|
| 861 | //
|
---|
| 862 | // RTCM2_24 (class implementation)
|
---|
| 863 | //
|
---|
| 864 | // Purpose:
|
---|
| 865 | //
|
---|
| 866 | // A class for handling RTCM 2 Reference Station Antenna
|
---|
| 867 | // Reference Point Parameter messages
|
---|
| 868 | //
|
---|
| 869 | //------------------------------------------------------------------------------
|
---|
| 870 |
|
---|
| 871 | void RTCM2_24::extract(const RTCM2packet& P) {
|
---|
| 872 |
|
---|
| 873 | double dx,dy,dz;
|
---|
| 874 |
|
---|
[725] | 875 | // Check validity, packet type and number of data words
|
---|
[206] | 876 |
|
---|
| 877 | validMsg = (P.valid());
|
---|
| 878 | if (!validMsg) return;
|
---|
| 879 |
|
---|
| 880 | validMsg = (P.ID()==24);
|
---|
| 881 | if (!validMsg) return;
|
---|
| 882 |
|
---|
[725] | 883 | validMsg = (P.nDataWords()==6);
|
---|
| 884 | if (!validMsg) return;
|
---|
| 885 |
|
---|
[206] | 886 | // System indicator
|
---|
| 887 |
|
---|
| 888 | isGPS = (P.getUnsignedBits(118,1)==0);
|
---|
| 889 | isGLONASS = (P.getUnsignedBits(118,1)==1);
|
---|
| 890 |
|
---|
| 891 | // Antenna reference point coordinates
|
---|
| 892 |
|
---|
| 893 | x = 64.0*P.getBits( 0,32);
|
---|
| 894 | y = 64.0*P.getBits(40,32);
|
---|
| 895 | z = 64.0*P.getBits(80,32);
|
---|
| 896 | dx = P.getUnsignedBits( 32,6);
|
---|
| 897 | dy = P.getUnsignedBits( 72,6);
|
---|
| 898 | dz = P.getUnsignedBits(112,6);
|
---|
| 899 | x = 0.0001*( x + (x<0? -dx:+dx) );
|
---|
| 900 | y = 0.0001*( y + (y<0? -dy:+dy) );
|
---|
| 901 | z = 0.0001*( z + (z<0? -dz:+dz) );
|
---|
| 902 |
|
---|
| 903 | // Antenna Height
|
---|
| 904 |
|
---|
| 905 | if (P.getUnsignedBits(119,1)==1) {
|
---|
| 906 | h= P.getUnsignedBits(120,18)*0.0001;
|
---|
| 907 | };
|
---|
| 908 |
|
---|
| 909 |
|
---|
| 910 | };
|
---|
| 911 |
|
---|
| 912 |
|
---|
| 913 | //------------------------------------------------------------------------------
|
---|
| 914 | //
|
---|
| 915 | // RTCM2_Obs (class definition)
|
---|
| 916 | //
|
---|
| 917 | // Purpose:
|
---|
| 918 | //
|
---|
| 919 | // A class for handling blocks of RTCM2 18 & 19 packets that need to be
|
---|
| 920 | // combined to get a complete set of measurements
|
---|
| 921 | //
|
---|
| 922 | // Notes:
|
---|
| 923 | //
|
---|
| 924 | // The class collects L1/L2 code and phase measurements for GPS and GLONASS.
|
---|
| 925 | // Since the Multiple Message Indicator is inconsistently handled by various
|
---|
| 926 | // receivers we simply require code and phase on L1 and L2 for a complete
|
---|
| 927 | // set ob observations at a given epoch. GLONASS observations are optional,
|
---|
| 928 | // but all four types (code+phase,L1+L2) must be provided, if at least one
|
---|
| 929 | // is given. Also, the GLONASS message must follow the corresponding GPS
|
---|
| 930 | // message.
|
---|
| 931 | //
|
---|
| 932 | //------------------------------------------------------------------------------
|
---|
| 933 |
|
---|
| 934 | // Constructor
|
---|
| 935 |
|
---|
| 936 | RTCM2_Obs::RTCM2_Obs() {
|
---|
| 937 |
|
---|
| 938 | clear();
|
---|
| 939 |
|
---|
| 940 | };
|
---|
| 941 |
|
---|
| 942 | // Reset entire block
|
---|
| 943 |
|
---|
| 944 | void RTCM2_Obs::clear() {
|
---|
[725] | 945 |
|
---|
| 946 | GPSonly = true;
|
---|
| 947 |
|
---|
[206] | 948 | secs=0.0; // Seconds of hour (GPS time)
|
---|
| 949 | nSat=0; // Number of space vehicles
|
---|
[725] | 950 | PRN.resize(0); // space vehicles
|
---|
[206] | 951 | rng_C1.resize(0); // Pseudorange [m]
|
---|
| 952 | rng_P1.resize(0); // Pseudorange [m]
|
---|
| 953 | rng_P2.resize(0); // Pseudorange [m]
|
---|
| 954 | cph_L1.resize(0); // Carrier phase [m]
|
---|
| 955 | cph_L2.resize(0); // Carrier phase [m]
|
---|
[1044] | 956 | slip_L1.resize(0); // Slip counter
|
---|
| 957 | slip_L2.resize(0); // Slip counter
|
---|
[206] | 958 |
|
---|
| 959 | availability.reset(); // Message status flags
|
---|
| 960 |
|
---|
| 961 | };
|
---|
| 962 |
|
---|
| 963 | // Availability checks
|
---|
| 964 |
|
---|
[242] | 965 | bool RTCM2_Obs::anyGPS() const {
|
---|
[206] | 966 |
|
---|
| 967 | return availability.test(bit_L1rngGPS) ||
|
---|
| 968 | availability.test(bit_L2rngGPS) ||
|
---|
| 969 | availability.test(bit_L1cphGPS) ||
|
---|
| 970 | availability.test(bit_L2cphGPS);
|
---|
| 971 |
|
---|
| 972 | };
|
---|
| 973 |
|
---|
[242] | 974 | bool RTCM2_Obs::anyGLONASS() const {
|
---|
[206] | 975 |
|
---|
| 976 | return availability.test(bit_L1rngGLO) ||
|
---|
| 977 | availability.test(bit_L2rngGLO) ||
|
---|
| 978 | availability.test(bit_L1cphGLO) ||
|
---|
| 979 | availability.test(bit_L2cphGLO);
|
---|
| 980 |
|
---|
| 981 | };
|
---|
| 982 |
|
---|
[242] | 983 | bool RTCM2_Obs::allGPS() const {
|
---|
[206] | 984 |
|
---|
| 985 | return availability.test(bit_L1rngGPS) &&
|
---|
| 986 | availability.test(bit_L2rngGPS) &&
|
---|
| 987 | availability.test(bit_L1cphGPS) &&
|
---|
| 988 | availability.test(bit_L2cphGPS);
|
---|
| 989 |
|
---|
| 990 | };
|
---|
| 991 |
|
---|
[242] | 992 | bool RTCM2_Obs::allGLONASS() const {
|
---|
[206] | 993 |
|
---|
| 994 | return availability.test(bit_L1rngGLO) &&
|
---|
| 995 | availability.test(bit_L2rngGLO) &&
|
---|
| 996 | availability.test(bit_L1cphGLO) &&
|
---|
| 997 | availability.test(bit_L2cphGLO);
|
---|
| 998 |
|
---|
| 999 | };
|
---|
| 1000 |
|
---|
| 1001 | // Validity
|
---|
| 1002 |
|
---|
[242] | 1003 | bool RTCM2_Obs::valid() const {
|
---|
[206] | 1004 |
|
---|
[332] | 1005 | return ( allGPS() && ( GPSonly || allGLONASS() ) );
|
---|
[206] | 1006 |
|
---|
| 1007 | };
|
---|
| 1008 |
|
---|
| 1009 |
|
---|
| 1010 | //
|
---|
| 1011 | // Extract RTCM2 18 & 19 messages and store relevant data for future use
|
---|
| 1012 | //
|
---|
| 1013 |
|
---|
| 1014 | void RTCM2_Obs::extract(const RTCM2packet& P) {
|
---|
| 1015 |
|
---|
| 1016 | bool isGPS,isCAcode,isL1,isOth;
|
---|
| 1017 | int NSat,idx;
|
---|
[1044] | 1018 | int sid,prn,slip_cnt;
|
---|
[206] | 1019 | double t,rng,cph;
|
---|
| 1020 |
|
---|
| 1021 | // Check validity and packet type
|
---|
| 1022 |
|
---|
[332] | 1023 | if ( ! ( P.valid() &&
|
---|
[725] | 1024 | (P.ID()==18 || P.ID()==19) ) ) return;
|
---|
[206] | 1025 |
|
---|
[725] | 1026 | // Check number of data words, message starts with 1 DW for epoch, then each
|
---|
| 1027 | // satellite brings 2 DW,
|
---|
| 1028 | // Do not start decoding if less than 3 DW are in package
|
---|
| 1029 |
|
---|
| 1030 | if ( P.nDataWords()<3 ) {
|
---|
| 1031 | #if ( DEBUG > 0 )
|
---|
| 1032 | cerr << "Error in RTCM2_Obs::extract(): less than 3 DW ("
|
---|
| 1033 | << P.nDataWords() << ") detected" << endl;
|
---|
| 1034 | #endif
|
---|
[728] | 1035 |
|
---|
[725] | 1036 | return;
|
---|
| 1037 | };
|
---|
| 1038 |
|
---|
| 1039 | // Check if number of data words is odd number
|
---|
| 1040 |
|
---|
| 1041 | if ( P.nDataWords()%2==0 ){
|
---|
| 1042 | #if ( DEBUG > 0 )
|
---|
| 1043 | cerr << "Error in RTCM2_Obs::extract(): odd number of DW ("
|
---|
| 1044 | << P.nDataWords() << ") detected" << endl;
|
---|
| 1045 | #endif
|
---|
[728] | 1046 |
|
---|
[725] | 1047 | return;
|
---|
| 1048 | };
|
---|
| 1049 |
|
---|
[206] | 1050 | // Clear previous data if block was already complete
|
---|
| 1051 |
|
---|
| 1052 | if (valid()) clear();
|
---|
| 1053 |
|
---|
| 1054 | // Process carrier phase message
|
---|
| 1055 |
|
---|
| 1056 | if ( P.ID()==18 ) {
|
---|
| 1057 |
|
---|
| 1058 | // Number of satellites in current message
|
---|
| 1059 | NSat = (P.nDataWords()-1)/2;
|
---|
| 1060 |
|
---|
| 1061 | // Current epoch (mod 3600 sec)
|
---|
| 1062 | t = 0.6*P.modZCount()
|
---|
| 1063 | + P.getUnsignedBits(4,20)*1.0e-6;
|
---|
[706] | 1064 |
|
---|
| 1065 | #if (ROUND_EPOCH==1)
|
---|
[366] | 1066 | // SC-104 V2.3 4-42 Note 1 4. Assume measurements at hard edges
|
---|
| 1067 | // of receiver clock with minimum divisions of 10ms
|
---|
| 1068 | // and clock error less then recommended 1.1ms
|
---|
[464] | 1069 | // Hence, round time tag to 100 ms
|
---|
[706] | 1070 | t = floor(t*100.0+0.5)/100.0;
|
---|
| 1071 | #endif
|
---|
| 1072 |
|
---|
[206] | 1073 | // Frequency (exit if neither L1 nor L2)
|
---|
| 1074 | isL1 = ( P.getUnsignedBits(0,1)==0 );
|
---|
| 1075 | isOth = ( P.getUnsignedBits(1,1)==1 );
|
---|
| 1076 | if (isOth) return;
|
---|
| 1077 |
|
---|
| 1078 | // Constellation (for first satellite in message)
|
---|
| 1079 | isGPS = ( P.getUnsignedBits(26,1)==0 );
|
---|
[332] | 1080 | GPSonly = GPSonly && isGPS;
|
---|
| 1081 |
|
---|
[206] | 1082 | // Multiple Message Indicator (only checked for first satellite)
|
---|
[253] | 1083 | // pendingMsg = ( P.getUnsignedBits(24,1)==1 );
|
---|
[206] | 1084 |
|
---|
| 1085 | // Handle epoch: store epoch of first GPS message and
|
---|
| 1086 | // check consistency of subsequent messages. GLONASS time tags
|
---|
| 1087 | // are different and have to be ignored
|
---|
| 1088 | if (isGPS) {
|
---|
| 1089 | if ( nSat==0 ) {
|
---|
| 1090 | secs = t; // Store epoch
|
---|
| 1091 | }
|
---|
[706] | 1092 | // else if (t!=secs) {
|
---|
| 1093 | else if (abs(t-secs)>1e-6) {
|
---|
[206] | 1094 | clear(); secs = t; // Clear all data, then store epoch
|
---|
| 1095 | };
|
---|
| 1096 | };
|
---|
| 1097 |
|
---|
[332] | 1098 | // Discard GLONASS observations if no prior GPS observations
|
---|
[206] | 1099 | // are available
|
---|
| 1100 | if (!isGPS && !anyGPS() ) return;
|
---|
| 1101 |
|
---|
| 1102 | // Set availability flags
|
---|
| 1103 |
|
---|
| 1104 | if ( isL1 && isGPS) availability.set(bit_L1cphGPS);
|
---|
| 1105 | if (!isL1 && isGPS) availability.set(bit_L2cphGPS);
|
---|
| 1106 | if ( isL1 && !isGPS) availability.set(bit_L1cphGLO);
|
---|
| 1107 | if (!isL1 && !isGPS) availability.set(bit_L2cphGLO);
|
---|
[725] | 1108 |
|
---|
[728] | 1109 | #if ( DEBUG > 0 )
|
---|
| 1110 | cerr << "RTCM2_Obs::extract(): availability "
|
---|
| 1111 | << bitset<8>(availability) << endl;
|
---|
| 1112 | #endif
|
---|
| 1113 |
|
---|
| 1114 |
|
---|
[206] | 1115 | // Process all satellites
|
---|
| 1116 |
|
---|
| 1117 | for (int iSat=0;iSat<NSat;iSat++){
|
---|
| 1118 |
|
---|
| 1119 | // Code type
|
---|
| 1120 | isCAcode = ( P.getUnsignedBits(iSat*48+25,1)==0 );
|
---|
| 1121 |
|
---|
| 1122 | // Satellite
|
---|
| 1123 | sid = P.getUnsignedBits(iSat*48+27,5);
|
---|
[708] | 1124 | if (sid==0) sid=32;
|
---|
[706] | 1125 |
|
---|
[206] | 1126 | prn = (isGPS? sid : sid+200 );
|
---|
[1105] | 1127 |
|
---|
[206] | 1128 | // Carrier phase measurement (mod 2^23 [cy]; sign matched to range)
|
---|
| 1129 | cph = -P.getBits(iSat*48+40,32)/256.0;
|
---|
| 1130 |
|
---|
[1044] | 1131 | // Slip counter
|
---|
| 1132 | slip_cnt = P.getUnsignedBits(iSat*48+35,5);
|
---|
| 1133 |
|
---|
[206] | 1134 | // Is this a new PRN?
|
---|
| 1135 | idx=-1;
|
---|
| 1136 | for (unsigned int i=0;i<PRN.size();i++) {
|
---|
| 1137 | if (PRN[i]==prn) { idx=i; break; };
|
---|
| 1138 | };
|
---|
| 1139 | if (idx==-1) {
|
---|
| 1140 | // Insert new sat at end of list
|
---|
| 1141 | nSat++; idx = nSat-1;
|
---|
| 1142 | PRN.push_back(prn);
|
---|
| 1143 | rng_C1.push_back(0.0);
|
---|
| 1144 | rng_P1.push_back(0.0);
|
---|
| 1145 | rng_P2.push_back(0.0);
|
---|
| 1146 | cph_L1.push_back(0.0);
|
---|
| 1147 | cph_L2.push_back(0.0);
|
---|
[1105] | 1148 | slip_L1.push_back(-1);
|
---|
| 1149 | slip_L2.push_back(-1);
|
---|
[206] | 1150 | };
|
---|
| 1151 |
|
---|
| 1152 | // Store measurement
|
---|
| 1153 | if (isL1) {
|
---|
[1105] | 1154 | cph_L1[idx] = cph;
|
---|
| 1155 | slip_L1[idx] = slip_cnt;
|
---|
[206] | 1156 | }
|
---|
| 1157 | else {
|
---|
[1105] | 1158 | cph_L2[idx] = cph;
|
---|
| 1159 | slip_L2[idx] = slip_cnt;
|
---|
[206] | 1160 | };
|
---|
| 1161 |
|
---|
| 1162 | };
|
---|
| 1163 |
|
---|
| 1164 | };
|
---|
| 1165 |
|
---|
| 1166 |
|
---|
| 1167 | // Process pseudorange message
|
---|
| 1168 |
|
---|
| 1169 | if ( P.ID()==19 ) {
|
---|
| 1170 |
|
---|
| 1171 | // Number of satellites in current message
|
---|
| 1172 | NSat = (P.nDataWords()-1)/2;
|
---|
| 1173 |
|
---|
| 1174 | // Current epoch (mod 3600 sec)
|
---|
| 1175 | t = 0.6*P.modZCount()
|
---|
| 1176 | + P.getUnsignedBits(4,20)*1.0e-6;
|
---|
[706] | 1177 |
|
---|
| 1178 | #if (ROUND_EPOCH==1)
|
---|
[366] | 1179 | // SC-104 V2.3 4-42 Note 1 4. Assume measurements at hard edges
|
---|
| 1180 | // of receiver clock with minimum divisions of 10ms
|
---|
| 1181 | // and clock error less then recommended 1.1ms
|
---|
[464] | 1182 | // Hence, round time tag to 100 ms
|
---|
[706] | 1183 | t = floor(t*100.0+0.5)/100.0;
|
---|
| 1184 | #endif
|
---|
| 1185 |
|
---|
[206] | 1186 | // Frequency (exit if neither L1 nor L2)
|
---|
| 1187 | isL1 = ( P.getUnsignedBits(0,1)==0 );
|
---|
| 1188 | isOth = ( P.getUnsignedBits(1,1)==1 );
|
---|
| 1189 | if (isOth) return;
|
---|
| 1190 |
|
---|
[707] | 1191 | #if (FIX_TRIMBLE_4000SSI==1)
|
---|
| 1192 | // Fix for data streams originating from TRIMBLE_4000SSI receivers.
|
---|
| 1193 | // GPS PRN32 is erroneously flagged as GLONASS satellite in the C/A
|
---|
| 1194 | // pseudorange messages. We therefore use a majority voting to
|
---|
| 1195 | // determine the true constellation for this message.
|
---|
| 1196 | // This fix is only required for Trimble4000SSI receivers but can also
|
---|
| 1197 | // be used with all other known receivers.
|
---|
| 1198 | int nGPS=0;
|
---|
| 1199 | for(int iSat=0; iSat<NSat; iSat++){
|
---|
| 1200 | // Constellation (for each satellite in message)
|
---|
| 1201 | isGPS = ( P.getUnsignedBits(iSat*48+26,1)==0 );
|
---|
| 1202 | if(isGPS) nGPS++;
|
---|
| 1203 | };
|
---|
| 1204 | isGPS = (2*nGPS>NSat);
|
---|
| 1205 | #else
|
---|
[206] | 1206 | // Constellation (for first satellite in message)
|
---|
| 1207 | isGPS = ( P.getUnsignedBits(26,1)==0 );
|
---|
[707] | 1208 | #endif
|
---|
[708] | 1209 | GPSonly = GPSonly && isGPS;
|
---|
[206] | 1210 |
|
---|
| 1211 | // Multiple Message Indicator (only checked for first satellite)
|
---|
[253] | 1212 | // pendingMsg = ( P.getUnsignedBits(24,1)==1 );
|
---|
[206] | 1213 |
|
---|
| 1214 | // Handle epoch: store epoch of first GPS message and
|
---|
| 1215 | // check consistency of subsequent messages. GLONASS time tags
|
---|
| 1216 | // are different and have to be ignored
|
---|
| 1217 | if (isGPS) {
|
---|
| 1218 | if ( nSat==0 ) {
|
---|
| 1219 | secs = t; // Store epoch
|
---|
| 1220 | }
|
---|
[706] | 1221 | // else if (t!=secs) {
|
---|
| 1222 | else if (abs(t-secs)>1e-6) {
|
---|
[206] | 1223 | clear(); secs = t; // Clear all data, then store epoch
|
---|
| 1224 | };
|
---|
| 1225 | };
|
---|
| 1226 |
|
---|
[332] | 1227 | // Discard GLONASS observations if no prior GPS observations
|
---|
[206] | 1228 | // are available
|
---|
| 1229 | if (!isGPS && !anyGPS() ) return;
|
---|
| 1230 |
|
---|
| 1231 | // Set availability flags
|
---|
| 1232 | if ( isL1 && isGPS) availability.set(bit_L1rngGPS);
|
---|
| 1233 | if (!isL1 && isGPS) availability.set(bit_L2rngGPS);
|
---|
| 1234 | if ( isL1 && !isGPS) availability.set(bit_L1rngGLO);
|
---|
| 1235 | if (!isL1 && !isGPS) availability.set(bit_L2rngGLO);
|
---|
| 1236 |
|
---|
[728] | 1237 | #if ( DEBUG > 0 )
|
---|
| 1238 | cerr << "RTCM2_Obs::extract(): availability "
|
---|
| 1239 | << bitset<8>(availability) << endl;
|
---|
| 1240 | #endif
|
---|
| 1241 |
|
---|
[206] | 1242 | // Process all satellites
|
---|
| 1243 |
|
---|
| 1244 | for (int iSat=0;iSat<NSat;iSat++){
|
---|
| 1245 |
|
---|
| 1246 | // Code type
|
---|
| 1247 | isCAcode = ( P.getUnsignedBits(iSat*48+25,1)==0 );
|
---|
| 1248 |
|
---|
| 1249 | // Satellite
|
---|
| 1250 | sid = P.getUnsignedBits(iSat*48+27,5);
|
---|
[708] | 1251 | if (sid==0) sid=32;
|
---|
[206] | 1252 | prn = (isGPS? sid : sid+200 );
|
---|
| 1253 |
|
---|
| 1254 | // Pseudorange measurement [m]
|
---|
| 1255 | rng = P.getUnsignedBits(iSat*48+40,32)*0.02;
|
---|
| 1256 |
|
---|
| 1257 | // Is this a new PRN?
|
---|
| 1258 | idx=-1;
|
---|
| 1259 | for (unsigned int i=0;i<PRN.size();i++) {
|
---|
| 1260 | if (PRN[i]==prn) { idx=i; break; };
|
---|
| 1261 | };
|
---|
| 1262 | if (idx==-1) {
|
---|
| 1263 | // Insert new sat at end of list
|
---|
| 1264 | nSat++; idx = nSat-1;
|
---|
| 1265 | PRN.push_back(prn);
|
---|
| 1266 | rng_C1.push_back(0.0);
|
---|
| 1267 | rng_P1.push_back(0.0);
|
---|
| 1268 | rng_P2.push_back(0.0);
|
---|
| 1269 | cph_L1.push_back(0.0);
|
---|
| 1270 | cph_L2.push_back(0.0);
|
---|
[1105] | 1271 | slip_L1.push_back(-1);
|
---|
| 1272 | slip_L2.push_back(-1);
|
---|
[206] | 1273 | };
|
---|
| 1274 |
|
---|
| 1275 | // Store measurement
|
---|
| 1276 | if (isL1) {
|
---|
[354] | 1277 | if (isCAcode) {
|
---|
[706] | 1278 | rng_C1[idx] = rng;
|
---|
| 1279 | }
|
---|
| 1280 | else {
|
---|
| 1281 | rng_P1[idx] = rng;
|
---|
| 1282 | }
|
---|
| 1283 | }
|
---|
[206] | 1284 | else {
|
---|
| 1285 | rng_P2[idx] = rng;
|
---|
| 1286 | };
|
---|
[706] | 1287 |
|
---|
[206] | 1288 | };
|
---|
| 1289 |
|
---|
| 1290 | };
|
---|
| 1291 |
|
---|
| 1292 | };
|
---|
| 1293 |
|
---|
| 1294 | //
|
---|
| 1295 | // Resolution of 2^24 cy carrier phase ambiguity
|
---|
| 1296 | // caused by 32-bit data field restrictions
|
---|
| 1297 | //
|
---|
| 1298 | // Note: the RTCM standard specifies an ambiguity of +/-2^23 cy.
|
---|
| 1299 | // However, numerous receivers generate data in the +/-2^22 cy range.
|
---|
| 1300 | // A reduced ambiguity of 2^23 cy appears compatible with both cases.
|
---|
| 1301 | //
|
---|
| 1302 |
|
---|
[242] | 1303 | double RTCM2_Obs::resolvedPhase_L1(int i) const {
|
---|
[206] | 1304 |
|
---|
| 1305 | //const double ambig = pow(2.0,24); // as per RTCM2 spec
|
---|
| 1306 | const double ambig = pow(2.0,23); // used by many receivers
|
---|
| 1307 |
|
---|
| 1308 | double rng;
|
---|
| 1309 | double n;
|
---|
| 1310 |
|
---|
| 1311 | if (!valid() || i<0 || i>nSat-1) return 0.0;
|
---|
| 1312 |
|
---|
| 1313 | rng = rng_C1[i];
|
---|
[227] | 1314 | if (rng==0.0) rng = rng_P1[i];
|
---|
[206] | 1315 | if (rng==0.0) return 0.0;
|
---|
| 1316 |
|
---|
| 1317 | n = floor( (rng/lambda_L1-cph_L1[i]) / ambig + 0.5 );
|
---|
| 1318 |
|
---|
| 1319 | return cph_L1[i] + n*ambig;
|
---|
| 1320 |
|
---|
| 1321 | };
|
---|
| 1322 |
|
---|
[242] | 1323 | double RTCM2_Obs::resolvedPhase_L2(int i) const {
|
---|
[206] | 1324 |
|
---|
| 1325 | //const double ambig = pow(2.0,24); // as per RTCM2 spec
|
---|
| 1326 | const double ambig = pow(2.0,23); // used by many receivers
|
---|
| 1327 |
|
---|
| 1328 | double rng;
|
---|
| 1329 | double n;
|
---|
| 1330 |
|
---|
| 1331 | if (!valid() || i<0 || i>nSat-1) return 0.0;
|
---|
| 1332 |
|
---|
| 1333 | rng = rng_C1[i];
|
---|
[227] | 1334 | if (rng==0.0) rng = rng_P1[i];
|
---|
[206] | 1335 | if (rng==0.0) return 0.0;
|
---|
| 1336 |
|
---|
| 1337 | n = floor( (rng/lambda_L2-cph_L2[i]) / ambig + 0.5 );
|
---|
| 1338 |
|
---|
| 1339 | return cph_L2[i] + n*ambig;
|
---|
| 1340 |
|
---|
| 1341 | };
|
---|
| 1342 |
|
---|
| 1343 | //
|
---|
| 1344 | // Resolution of epoch using reference date (GPS week and secs)
|
---|
| 1345 | //
|
---|
| 1346 |
|
---|
| 1347 | void RTCM2_Obs::resolveEpoch (int refWeek, double refSecs,
|
---|
[242] | 1348 | int& epochWeek, double& epochSecs ) const {
|
---|
[206] | 1349 |
|
---|
| 1350 | const double secsPerWeek = 604800.0;
|
---|
| 1351 |
|
---|
| 1352 | epochWeek = refWeek;
|
---|
[332] | 1353 | epochSecs = secs + 3600.0*(floor((refSecs-secs)/3600.0+0.5));
|
---|
[206] | 1354 |
|
---|
| 1355 | if (epochSecs<0 ) { epochWeek--; epochSecs+=secsPerWeek; };
|
---|
| 1356 | if (epochSecs>secsPerWeek) { epochWeek++; epochSecs-=secsPerWeek; };
|
---|
| 1357 |
|
---|
| 1358 | };
|
---|
| 1359 |
|
---|
| 1360 | }; // End of namespace rtcm2
|
---|