#include #include #include #include #include #include "ephemeris.h" #include "bncutils.h" #include "bnctime.h" #include "bnccore.h" #include "bncutils.h" #include "satObs.h" #include "pppInclude.h" #include "pppModel.h" using namespace std; // Constructor //////////////////////////////////////////////////////////////////////////// t_eph::t_eph() { _checkState = unchecked; _orbCorr = 0; _clkCorr = 0; } // Destructor //////////////////////////////////////////////////////////////////////////// t_eph::~t_eph() { if (_orbCorr) delete _orbCorr; if (_clkCorr) delete _clkCorr; } // //////////////////////////////////////////////////////////////////////////// void t_eph::setOrbCorr(const t_orbCorr* orbCorr) { if (_orbCorr) { delete _orbCorr; _orbCorr = 0; } _orbCorr = new t_orbCorr(*orbCorr); } // //////////////////////////////////////////////////////////////////////////// void t_eph::setClkCorr(const t_clkCorr* clkCorr) { if (_clkCorr) { delete _clkCorr; _clkCorr = 0; } _clkCorr = new t_clkCorr(*clkCorr); } // //////////////////////////////////////////////////////////////////////////// t_irc t_eph::getCrd(const bncTime& tt, ColumnVector& xc, ColumnVector& vv, bool useCorr) const { if (_checkState == bad || _checkState == unhealthy || _checkState == outdated) { return failure; } const QVector updateInt = QVector() << 1 << 2 << 5 << 10 << 15 << 30 << 60 << 120 << 240 << 300 << 600 << 900 << 1800 << 3600 << 7200 << 10800; xc.ReSize(6); vv.ReSize(3); if (position(tt.gpsw(), tt.gpssec(), xc.data(), vv.data()) != success) { return failure; } if (useCorr) { if (_orbCorr && _clkCorr) { double dtO = tt - _orbCorr->_time; if (_orbCorr->_updateInt) { dtO -= (0.5 * updateInt[_orbCorr->_updateInt]); } ColumnVector dx(3); dx[0] = _orbCorr->_xr[0] + _orbCorr->_dotXr[0] * dtO; dx[1] = _orbCorr->_xr[1] + _orbCorr->_dotXr[1] * dtO; dx[2] = _orbCorr->_xr[2] + _orbCorr->_dotXr[2] * dtO; RSW_to_XYZ(xc.Rows(1,3), vv.Rows(1,3), dx, dx); xc[0] -= dx[0]; xc[1] -= dx[1]; xc[2] -= dx[2]; ColumnVector dv(3); RSW_to_XYZ(xc.Rows(1,3), vv.Rows(1,3), _orbCorr->_dotXr, dv); vv[0] -= dv[0]; vv[1] -= dv[1]; vv[2] -= dv[2]; double dtC = tt - _clkCorr->_time; if (_clkCorr->_updateInt) { dtC -= (0.5 * updateInt[_clkCorr->_updateInt]); } xc[3] += _clkCorr->_dClk + _clkCorr->_dotDClk * dtC + _clkCorr->_dotDotDClk * dtC * dtC; } else { return failure; } } return success; } // ////////////////////////////////////////////////////////////////////////////// QString t_eph::rinexDateStr(const bncTime& tt, const t_prn& prn, double version) { QString prnStr(prn.toString().c_str()); return rinexDateStr(tt, prnStr, version); } // ////////////////////////////////////////////////////////////////////////////// QString t_eph::rinexDateStr(const bncTime& tt, const QString& prnStr, double version) { QString datStr; unsigned year, month, day, hour, min; double sec; tt.civil_date(year, month, day); tt.civil_time(hour, min, sec); QTextStream out(&datStr); if (version < 3.0) { QString prnHlp = prnStr.mid(1,2); if (prnHlp[0] == '0') prnHlp[0] = ' '; out << prnHlp << QString(" %1 %2 %3 %4 %5%6") .arg(year % 100, 2, 10, QChar('0')) .arg(month, 2) .arg(day, 2) .arg(hour, 2) .arg(min, 2) .arg(sec, 5, 'f',1); } else { out << prnStr << QString(" %1 %2 %3 %4 %5 %6") .arg(year, 4) .arg(month, 2, 10, QChar('0')) .arg(day, 2, 10, QChar('0')) .arg(hour, 2, 10, QChar('0')) .arg(min, 2, 10, QChar('0')) .arg(int(sec), 2, 10, QChar('0')); } return datStr; } // Constructor ////////////////////////////////////////////////////////////////////////////// t_ephGPS::t_ephGPS(float rnxVersion, const QStringList& lines) { const int nLines = 8; if (lines.size() != nLines) { _checkState = bad; return; } // RINEX Format // ------------ int fieldLen = 19; int pos[4]; pos[0] = (rnxVersion <= 2.12) ? 3 : 4; pos[1] = pos[0] + fieldLen; pos[2] = pos[1] + fieldLen; pos[3] = pos[2] + fieldLen; // Read eight lines // ---------------- for (int iLine = 0; iLine < nLines; iLine++) { QString line = lines[iLine]; if ( iLine == 0 ) { QTextStream in(line.left(pos[1]).toAscii()); int year, month, day, hour, min; double sec; QString prnStr, n; in >> prnStr; if (prnStr.size() == 1 && (prnStr[0] == 'G' || prnStr[0] == 'J' || prnStr[0] == 'I')) { in >> n; prnStr.append(n); } in >> year >> month >> day >> hour >> min >> sec; if (prnStr.at(0) == 'G') { _prn.set('G', prnStr.mid(1).toInt()); } else if (prnStr.at(0) == 'J') { _prn.set('J', prnStr.mid(1).toInt()); } else if (prnStr.at(0) == 'I') { _prn.set('I', prnStr.mid(1).toInt()); } else { _prn.set('G', prnStr.toInt()); } if (year < 80) { year += 2000; } else if (year < 100) { year += 1900; } _TOC.set(year, month, day, hour, min, sec); if ( readDbl(line, pos[1], fieldLen, _clock_bias ) || readDbl(line, pos[2], fieldLen, _clock_drift ) || readDbl(line, pos[3], fieldLen, _clock_driftrate) ) { _checkState = bad; return; } } else if ( iLine == 1 ) { if ( readDbl(line, pos[0], fieldLen, _IODE ) || readDbl(line, pos[1], fieldLen, _Crs ) || readDbl(line, pos[2], fieldLen, _Delta_n) || readDbl(line, pos[3], fieldLen, _M0 ) ) { _checkState = bad; return; } } else if ( iLine == 2 ) { if ( readDbl(line, pos[0], fieldLen, _Cuc ) || readDbl(line, pos[1], fieldLen, _e ) || readDbl(line, pos[2], fieldLen, _Cus ) || readDbl(line, pos[3], fieldLen, _sqrt_A) ) { _checkState = bad; return; } } else if ( iLine == 3 ) { if ( readDbl(line, pos[0], fieldLen, _TOEsec) || readDbl(line, pos[1], fieldLen, _Cic ) || readDbl(line, pos[2], fieldLen, _OMEGA0) || readDbl(line, pos[3], fieldLen, _Cis ) ) { _checkState = bad; return; } } else if ( iLine == 4 ) { if ( readDbl(line, pos[0], fieldLen, _i0 ) || readDbl(line, pos[1], fieldLen, _Crc ) || readDbl(line, pos[2], fieldLen, _omega ) || readDbl(line, pos[3], fieldLen, _OMEGADOT) ) { _checkState = bad; return; } } else if ( iLine == 5 && type() != t_eph::IRNSS) { if ( readDbl(line, pos[0], fieldLen, _IDOT ) || readDbl(line, pos[1], fieldLen, _L2Codes) || readDbl(line, pos[2], fieldLen, _TOEweek ) || readDbl(line, pos[3], fieldLen, _L2PFlag) ) { _checkState = bad; return; } } else if ( iLine == 5 && type() == t_eph::IRNSS) { if ( readDbl(line, pos[0], fieldLen, _IDOT ) || readDbl(line, pos[2], fieldLen, _TOEweek) ) { _checkState = bad; return; } } else if ( iLine == 6 && type() != t_eph::IRNSS) { if ( readDbl(line, pos[0], fieldLen, _ura ) || readDbl(line, pos[1], fieldLen, _health) || readDbl(line, pos[2], fieldLen, _TGD ) || readDbl(line, pos[3], fieldLen, _IODC ) ) { _checkState = bad; return; } } else if ( iLine == 6 && type() == t_eph::IRNSS) { if ( readDbl(line, pos[0], fieldLen, _ura ) || readDbl(line, pos[1], fieldLen, _health) || readDbl(line, pos[2], fieldLen, _TGD ) ) { _checkState = bad; return; } } else if ( iLine == 7 ) { if ( readDbl(line, pos[0], fieldLen, _TOT) ) { _checkState = bad; return; } readDbl(line, pos[1], fieldLen, _fitInterval); // _fitInterval optional } } } // Compute GPS Satellite Position (virtual) //////////////////////////////////////////////////////////////////////////// t_irc t_ephGPS::position(int GPSweek, double GPSweeks, double* xc, double* vv) const { static const double omegaEarth = 7292115.1467e-11; static const double gmGRS = 398.6005e12; memset(xc, 0, 6*sizeof(double)); memset(vv, 0, 3*sizeof(double)); double a0 = _sqrt_A * _sqrt_A; if (a0 == 0) { return failure; } double n0 = sqrt(gmGRS/(a0*a0*a0)); bncTime tt(GPSweek, GPSweeks); double tk = tt - bncTime(int(_TOEweek), _TOEsec); double n = n0 + _Delta_n; double M = _M0 + n*tk; double E = M; double E_last; int nLoop = 0; do { E_last = E; E = M + _e*sin(E); if (++nLoop == 100) { return failure; } } while ( fabs(E-E_last)*a0 > 0.001 ); double v = 2.0*atan( sqrt( (1.0 + _e)/(1.0 - _e) )*tan( E/2 ) ); double u0 = v + _omega; double sin2u0 = sin(2*u0); double cos2u0 = cos(2*u0); double r = a0*(1 - _e*cos(E)) + _Crc*cos2u0 + _Crs*sin2u0; double i = _i0 + _IDOT*tk + _Cic*cos2u0 + _Cis*sin2u0; double u = u0 + _Cuc*cos2u0 + _Cus*sin2u0; double xp = r*cos(u); double yp = r*sin(u); double OM = _OMEGA0 + (_OMEGADOT - omegaEarth)*tk - omegaEarth*_TOEsec; double sinom = sin(OM); double cosom = cos(OM); double sini = sin(i); double cosi = cos(i); xc[0] = xp*cosom - yp*cosi*sinom; xc[1] = xp*sinom + yp*cosi*cosom; xc[2] = yp*sini; double tc = tt - _TOC; xc[3] = _clock_bias + _clock_drift*tc + _clock_driftrate*tc*tc; // Velocity // -------- double tanv2 = tan(v/2); double dEdM = 1 / (1 - _e*cos(E)); double dotv = sqrt((1.0 + _e)/(1.0 - _e)) / cos(E/2)/cos(E/2) / (1 + tanv2*tanv2) * dEdM * n; double dotu = dotv + (-_Cuc*sin2u0 + _Cus*cos2u0)*2*dotv; double dotom = _OMEGADOT - omegaEarth; double doti = _IDOT + (-_Cic*sin2u0 + _Cis*cos2u0)*2*dotv; double dotr = a0 * _e*sin(E) * dEdM * n + (-_Crc*sin2u0 + _Crs*cos2u0)*2*dotv; double dotx = dotr*cos(u) - r*sin(u)*dotu; double doty = dotr*sin(u) + r*cos(u)*dotu; vv[0] = cosom *dotx - cosi*sinom *doty // dX / dr - xp*sinom*dotom - yp*cosi*cosom*dotom // dX / dOMEGA + yp*sini*sinom*doti; // dX / di vv[1] = sinom *dotx + cosi*cosom *doty + xp*cosom*dotom - yp*cosi*sinom*dotom - yp*sini*cosom*doti; vv[2] = sini *doty + yp*cosi *doti; // Relativistic Correction // ----------------------- // correspondent to IGS convention and GPS ICD (and SSR standard) xc[3] -= 2.0 * (xc[0]*vv[0] + xc[1]*vv[1] + xc[2]*vv[2]) / t_CST::c / t_CST::c; xc[4] = _clock_drift + _clock_driftrate*tc; xc[5] = _clock_driftrate; return success; } // RINEX Format String ////////////////////////////////////////////////////////////////////////////// QString t_ephGPS::toString(double version) const { QString rnxStr = rinexDateStr(_TOC, _prn, version); QTextStream out(&rnxStr); out << QString("%1%2%3\n") .arg(_clock_bias, 19, 'e', 12) .arg(_clock_drift, 19, 'e', 12) .arg(_clock_driftrate, 19, 'e', 12); QString fmt = version < 3.0 ? " %1%2%3%4\n" : " %1%2%3%4\n"; out << QString(fmt) .arg(_IODE, 19, 'e', 12) .arg(_Crs, 19, 'e', 12) .arg(_Delta_n, 19, 'e', 12) .arg(_M0, 19, 'e', 12); out << QString(fmt) .arg(_Cuc, 19, 'e', 12) .arg(_e, 19, 'e', 12) .arg(_Cus, 19, 'e', 12) .arg(_sqrt_A, 19, 'e', 12); out << QString(fmt) .arg(_TOEsec, 19, 'e', 12) .arg(_Cic, 19, 'e', 12) .arg(_OMEGA0, 19, 'e', 12) .arg(_Cis, 19, 'e', 12); out << QString(fmt) .arg(_i0, 19, 'e', 12) .arg(_Crc, 19, 'e', 12) .arg(_omega, 19, 'e', 12) .arg(_OMEGADOT, 19, 'e', 12); if (type() == t_eph::IRNSS) { out << QString(fmt) .arg(_IDOT, 19, 'e', 12) .arg("", 19, QChar(' ')) .arg(_TOEweek, 19, 'e', 12) .arg("", 19, QChar(' ')); } else { out << QString(fmt) .arg(_IDOT, 19, 'e', 12) .arg(_L2Codes, 19, 'e', 12) .arg(_TOEweek, 19, 'e', 12) .arg(_L2PFlag, 19, 'e', 12); } if (type() == t_eph::IRNSS) { out << QString(fmt) .arg(_ura, 19, 'e', 12) .arg(_health, 19, 'e', 12) .arg(_TGD, 19, 'e', 12) .arg("", 19, QChar(' ')); } else { out << QString(fmt) .arg(_ura, 19, 'e', 12) .arg(_health, 19, 'e', 12) .arg(_TGD, 19, 'e', 12) .arg(_IODC, 19, 'e', 12); } double tot = _TOT; if (tot == 0.9999e9 && version < 3.0) { tot = 0.0; } if (type() == t_eph::IRNSS) { out << QString(fmt) .arg(tot, 19, 'e', 12) .arg("", 19, QChar(' ')) .arg("", 19, QChar(' ')) .arg("", 19, QChar(' ')); } else { out << QString(fmt) .arg(tot, 19, 'e', 12) .arg(_fitInterval, 19, 'e', 12) .arg("", 19, QChar(' ')) .arg("", 19, QChar(' ')); } return rnxStr; } // Constructor ////////////////////////////////////////////////////////////////////////////// t_ephGlo::t_ephGlo(float rnxVersion, const QStringList& lines) { const int nLines = 4; if (lines.size() != nLines) { _checkState = bad; return; } // RINEX Format // ------------ int fieldLen = 19; int pos[4]; pos[0] = (rnxVersion <= 2.12) ? 3 : 4; pos[1] = pos[0] + fieldLen; pos[2] = pos[1] + fieldLen; pos[3] = pos[2] + fieldLen; // Read four lines // --------------- for (int iLine = 0; iLine < nLines; iLine++) { QString line = lines[iLine]; if ( iLine == 0 ) { QTextStream in(line.left(pos[1]).toAscii()); int year, month, day, hour, min; double sec; QString prnStr, n; in >> prnStr; if (prnStr.size() == 1 && prnStr[0] == 'R') { in >> n; prnStr.append(n); } in >> year >> month >> day >> hour >> min >> sec; if (prnStr.at(0) == 'R') { _prn.set('R', prnStr.mid(1).toInt()); } else { _prn.set('R', prnStr.toInt()); } if (year < 80) { year += 2000; } else if (year < 100) { year += 1900; } _gps_utc = gnumleap(year, month, day); _TOC.set(year, month, day, hour, min, sec); _TOC = _TOC + _gps_utc; if ( readDbl(line, pos[1], fieldLen, _tau ) || readDbl(line, pos[2], fieldLen, _gamma) || readDbl(line, pos[3], fieldLen, _tki ) ) { _checkState = bad; return; } _tau = -_tau; } else if ( iLine == 1 ) { if ( readDbl(line, pos[0], fieldLen, _x_pos ) || readDbl(line, pos[1], fieldLen, _x_velocity ) || readDbl(line, pos[2], fieldLen, _x_acceleration) || readDbl(line, pos[3], fieldLen, _health ) ) { _checkState = bad; return; } } else if ( iLine == 2 ) { if ( readDbl(line, pos[0], fieldLen, _y_pos ) || readDbl(line, pos[1], fieldLen, _y_velocity ) || readDbl(line, pos[2], fieldLen, _y_acceleration ) || readDbl(line, pos[3], fieldLen, _frequency_number) ) { _checkState = bad; return; } } else if ( iLine == 3 ) { if ( readDbl(line, pos[0], fieldLen, _z_pos ) || readDbl(line, pos[1], fieldLen, _z_velocity ) || readDbl(line, pos[2], fieldLen, _z_acceleration) || readDbl(line, pos[3], fieldLen, _E ) ) { _checkState = bad; return; } } } // Initialize status vector // ------------------------ _tt = _TOC; _xv.ReSize(6); _xv(1) = _x_pos * 1.e3; _xv(2) = _y_pos * 1.e3; _xv(3) = _z_pos * 1.e3; _xv(4) = _x_velocity * 1.e3; _xv(5) = _y_velocity * 1.e3; _xv(6) = _z_velocity * 1.e3; } // Compute Glonass Satellite Position (virtual) //////////////////////////////////////////////////////////////////////////// t_irc t_ephGlo::position(int GPSweek, double GPSweeks, double* xc, double* vv) const { static const double nominalStep = 10.0; memset(xc, 0, 6*sizeof(double)); memset(vv, 0, 3*sizeof(double)); double dtPos = bncTime(GPSweek, GPSweeks) - _tt; if (fabs(dtPos) > 2 * 3600.0) { return failure; } int nSteps = int(fabs(dtPos) / nominalStep) + 1; double step = dtPos / nSteps; double acc[3]; acc[0] = _x_acceleration * 1.e3; acc[1] = _y_acceleration * 1.e3; acc[2] = _z_acceleration * 1.e3; for (int ii = 1; ii <= nSteps; ii++) { _xv = rungeKutta4(_tt.gpssec(), _xv, step, acc, glo_deriv); _tt = _tt + step; } // Position and Velocity // --------------------- xc[0] = _xv(1); xc[1] = _xv(2); xc[2] = _xv(3); vv[0] = _xv(4); vv[1] = _xv(5); vv[2] = _xv(6); // Clock Correction // ---------------- double dtClk = bncTime(GPSweek, GPSweeks) - _TOC; xc[3] = -_tau + _gamma * dtClk; xc[4] = _gamma; xc[5] = 0.0; return success; } // RINEX Format String ////////////////////////////////////////////////////////////////////////////// QString t_ephGlo::toString(double version) const { QString rnxStr = rinexDateStr(_TOC-_gps_utc, _prn, version); QTextStream out(&rnxStr); out << QString("%1%2%3\n") .arg(-_tau, 19, 'e', 12) .arg(_gamma, 19, 'e', 12) .arg(_tki, 19, 'e', 12); QString fmt = version < 3.0 ? " %1%2%3%4\n" : " %1%2%3%4\n"; out << QString(fmt) .arg(_x_pos, 19, 'e', 12) .arg(_x_velocity, 19, 'e', 12) .arg(_x_acceleration, 19, 'e', 12) .arg(_health, 19, 'e', 12); out << QString(fmt) .arg(_y_pos, 19, 'e', 12) .arg(_y_velocity, 19, 'e', 12) .arg(_y_acceleration, 19, 'e', 12) .arg(_frequency_number, 19, 'e', 12); out << QString(fmt) .arg(_z_pos, 19, 'e', 12) .arg(_z_velocity, 19, 'e', 12) .arg(_z_acceleration, 19, 'e', 12) .arg(_E, 19, 'e', 12); return rnxStr; } // Derivative of the state vector using a simple force model (static) //////////////////////////////////////////////////////////////////////////// ColumnVector t_ephGlo::glo_deriv(double /* tt */, const ColumnVector& xv, double* acc) { // State vector components // ----------------------- ColumnVector rr = xv.rows(1,3); ColumnVector vv = xv.rows(4,6); // Acceleration // ------------ static const double gmWGS = 398.60044e12; static const double AE = 6378136.0; static const double OMEGA = 7292115.e-11; static const double C20 = -1082.6257e-6; double rho = rr.norm_Frobenius(); double t1 = -gmWGS/(rho*rho*rho); double t2 = 3.0/2.0 * C20 * (gmWGS*AE*AE) / (rho*rho*rho*rho*rho); double t3 = OMEGA * OMEGA; double t4 = 2.0 * OMEGA; double z2 = rr(3) * rr(3); // Vector of derivatives // --------------------- ColumnVector va(6); va(1) = vv(1); va(2) = vv(2); va(3) = vv(3); va(4) = (t1 + t2*(1.0-5.0*z2/(rho*rho)) + t3) * rr(1) + t4*vv(2) + acc[0]; va(5) = (t1 + t2*(1.0-5.0*z2/(rho*rho)) + t3) * rr(2) - t4*vv(1) + acc[1]; va(6) = (t1 + t2*(3.0-5.0*z2/(rho*rho)) ) * rr(3) + acc[2]; return va; } // IOD of Glonass Ephemeris (virtual) //////////////////////////////////////////////////////////////////////////// unsigned int t_ephGlo::IOD() const { bncTime tMoscow = _TOC - _gps_utc + 3 * 3600.0; return (unsigned long)tMoscow.daysec() / 900; } // Health status of Glonass Ephemeris (virtual) //////////////////////////////////////////////////////////////////////////// unsigned int t_ephGlo::isUnhealthy() const { if (_almanac_health_availablility_indicator) { if ((_health == 0 && _almanac_health == 0) || (_health == 1 && _almanac_health == 0) || (_health == 1 && _almanac_health == 1)) { return 1; } } else if (!_almanac_health_availablility_indicator) { if (_health) { return 1; } } return 0; /* (_health == 0 && _almanac_health == 1) or (_health == 0) */ } // Constructor ////////////////////////////////////////////////////////////////////////////// t_ephGal::t_ephGal(float rnxVersion, const QStringList& lines) { int year, month, day, hour, min; double sec; QString prnStr; const int nLines = 8; if (lines.size() != nLines) { _checkState = bad; return; } // RINEX Format // ------------ int fieldLen = 19; double SVhealth = 0.0; double datasource = 0.0; int pos[4]; pos[0] = (rnxVersion <= 2.12) ? 3 : 4; pos[1] = pos[0] + fieldLen; pos[2] = pos[1] + fieldLen; pos[3] = pos[2] + fieldLen; // Read eight lines // ---------------- for (int iLine = 0; iLine < nLines; iLine++) { QString line = lines[iLine]; if ( iLine == 0 ) { QTextStream in(line.left(pos[1]).toAscii()); QString n; in >> prnStr; if (prnStr.size() == 1 && prnStr[0] == 'E') { in >> n; prnStr.append(n); } in >> year >> month >> day >> hour >> min >> sec; if (year < 80) { year += 2000; } else if (year < 100) { year += 1900; } _TOC.set(year, month, day, hour, min, sec); if ( readDbl(line, pos[1], fieldLen, _clock_bias ) || readDbl(line, pos[2], fieldLen, _clock_drift ) || readDbl(line, pos[3], fieldLen, _clock_driftrate) ) { _checkState = bad; return; } } else if ( iLine == 1 ) { if ( readDbl(line, pos[0], fieldLen, _IODnav ) || readDbl(line, pos[1], fieldLen, _Crs ) || readDbl(line, pos[2], fieldLen, _Delta_n) || readDbl(line, pos[3], fieldLen, _M0 ) ) { _checkState = bad; return; } } else if ( iLine == 2 ) { if ( readDbl(line, pos[0], fieldLen, _Cuc ) || readDbl(line, pos[1], fieldLen, _e ) || readDbl(line, pos[2], fieldLen, _Cus ) || readDbl(line, pos[3], fieldLen, _sqrt_A) ) { _checkState = bad; return; } } else if ( iLine == 3 ) { if ( readDbl(line, pos[0], fieldLen, _TOEsec) || readDbl(line, pos[1], fieldLen, _Cic ) || readDbl(line, pos[2], fieldLen, _OMEGA0) || readDbl(line, pos[3], fieldLen, _Cis ) ) { _checkState = bad; return; } } else if ( iLine == 4 ) { if ( readDbl(line, pos[0], fieldLen, _i0 ) || readDbl(line, pos[1], fieldLen, _Crc ) || readDbl(line, pos[2], fieldLen, _omega ) || readDbl(line, pos[3], fieldLen, _OMEGADOT) ) { _checkState = bad; return; } } else if ( iLine == 5 ) { if ( readDbl(line, pos[0], fieldLen, _IDOT ) || readDbl(line, pos[1], fieldLen, datasource) || readDbl(line, pos[2], fieldLen, _TOEweek ) ) { _checkState = bad; return; } else { if (int(datasource) & (1<<8)) { _fnav = true; _inav = false; } else if (int(datasource) & (1<<9)) { _fnav = false; _inav = true; } _TOEweek -= 1024.0; } } else if ( iLine == 6 ) { if ( readDbl(line, pos[0], fieldLen, _SISA ) || readDbl(line, pos[1], fieldLen, SVhealth) || readDbl(line, pos[2], fieldLen, _BGD_1_5A) || readDbl(line, pos[3], fieldLen, _BGD_1_5B) ) { _checkState = bad; return; } else { // Bit 0 _e1DataInValid = (int(SVhealth) & (1<<0)); // Bit 1-2 _E1_bHS = double((int(SVhealth) >> 1) & 0x3); // Bit 3 _e5aDataInValid = (int(SVhealth) & (1<<3)); // Bit 4-5 _E5aHS = double((int(SVhealth) >> 4) & 0x3); // Bit 6 _e5bDataInValid = (int(SVhealth) & (1<<6)); // Bit 7-8 _E5bHS = double((int(SVhealth) >> 7) & 0x3); if (prnStr.at(0) == 'E') { _prn.set('E', prnStr.mid(1).toInt(), _inav ? 1 : 0); } } } else if ( iLine == 7 ) { if ( readDbl(line, pos[0], fieldLen, _TOT) ) { _checkState = bad; return; } } } } // Compute Galileo Satellite Position (virtual) //////////////////////////////////////////////////////////////////////////// t_irc t_ephGal::position(int GPSweek, double GPSweeks, double* xc, double* vv) const { static const double omegaEarth = 7292115.1467e-11; static const double gmWGS = 398.6004418e12; memset(xc, 0, 6*sizeof(double)); memset(vv, 0, 3*sizeof(double)); double a0 = _sqrt_A * _sqrt_A; if (a0 == 0) { return failure; } double n0 = sqrt(gmWGS/(a0*a0*a0)); bncTime tt(GPSweek, GPSweeks); double tk = tt - bncTime(_TOC.gpsw(), _TOEsec); double n = n0 + _Delta_n; double M = _M0 + n*tk; double E = M; double E_last; int nLoop = 0; do { E_last = E; E = M + _e*sin(E); if (++nLoop == 100) { return failure; } } while ( fabs(E-E_last)*a0 > 0.001 ); double v = 2.0*atan( sqrt( (1.0 + _e)/(1.0 - _e) )*tan( E/2 ) ); double u0 = v + _omega; double sin2u0 = sin(2*u0); double cos2u0 = cos(2*u0); double r = a0*(1 - _e*cos(E)) + _Crc*cos2u0 + _Crs*sin2u0; double i = _i0 + _IDOT*tk + _Cic*cos2u0 + _Cis*sin2u0; double u = u0 + _Cuc*cos2u0 + _Cus*sin2u0; double xp = r*cos(u); double yp = r*sin(u); double OM = _OMEGA0 + (_OMEGADOT - omegaEarth)*tk - omegaEarth*_TOEsec; double sinom = sin(OM); double cosom = cos(OM); double sini = sin(i); double cosi = cos(i); xc[0] = xp*cosom - yp*cosi*sinom; xc[1] = xp*sinom + yp*cosi*cosom; xc[2] = yp*sini; double tc = tt - _TOC; xc[3] = _clock_bias + _clock_drift*tc + _clock_driftrate*tc*tc; // Velocity // -------- double tanv2 = tan(v/2); double dEdM = 1 / (1 - _e*cos(E)); double dotv = sqrt((1.0 + _e)/(1.0 - _e)) / cos(E/2)/cos(E/2) / (1 + tanv2*tanv2) * dEdM * n; double dotu = dotv + (-_Cuc*sin2u0 + _Cus*cos2u0)*2*dotv; double dotom = _OMEGADOT - omegaEarth; double doti = _IDOT + (-_Cic*sin2u0 + _Cis*cos2u0)*2*dotv; double dotr = a0 * _e*sin(E) * dEdM * n + (-_Crc*sin2u0 + _Crs*cos2u0)*2*dotv; double dotx = dotr*cos(u) - r*sin(u)*dotu; double doty = dotr*sin(u) + r*cos(u)*dotu; vv[0] = cosom *dotx - cosi*sinom *doty // dX / dr - xp*sinom*dotom - yp*cosi*cosom*dotom // dX / dOMEGA + yp*sini*sinom*doti; // dX / di vv[1] = sinom *dotx + cosi*cosom *doty + xp*cosom*dotom - yp*cosi*sinom*dotom - yp*sini*cosom*doti; vv[2] = sini *doty + yp*cosi *doti; // Relativistic Correction // ----------------------- // correspondent to Galileo ICD and to SSR standard xc[3] -= 4.442807633e-10 * _e * sqrt(a0) *sin(E); // correspondent to IGS convention //xc[3] -= 2.0 * (xc[0]*vv[0] + xc[1]*vv[1] + xc[2]*vv[2]) / t_CST::c / t_CST::c; xc[4] = _clock_drift + _clock_driftrate*tc; xc[5] = _clock_driftrate; return success; } // Health status of Galileo Ephemeris (virtual) //////////////////////////////////////////////////////////////////////////// unsigned int t_ephGal::isUnhealthy() const { if (_E5aHS && _E5bHS && _E1_bHS) { return 1; } return 0; } // RINEX Format String ////////////////////////////////////////////////////////////////////////////// QString t_ephGal::toString(double version) const { QString rnxStr = rinexDateStr(_TOC, _prn, version); QTextStream out(&rnxStr); out << QString("%1%2%3\n") .arg(_clock_bias, 19, 'e', 12) .arg(_clock_drift, 19, 'e', 12) .arg(_clock_driftrate, 19, 'e', 12); QString fmt = version < 3.0 ? " %1%2%3%4\n" : " %1%2%3%4\n"; out << QString(fmt) .arg(_IODnav, 19, 'e', 12) .arg(_Crs, 19, 'e', 12) .arg(_Delta_n, 19, 'e', 12) .arg(_M0, 19, 'e', 12); out << QString(fmt) .arg(_Cuc, 19, 'e', 12) .arg(_e, 19, 'e', 12) .arg(_Cus, 19, 'e', 12) .arg(_sqrt_A, 19, 'e', 12); out << QString(fmt) .arg(_TOEsec, 19, 'e', 12) .arg(_Cic, 19, 'e', 12) .arg(_OMEGA0, 19, 'e', 12) .arg(_Cis, 19, 'e', 12); out << QString(fmt) .arg(_i0, 19, 'e', 12) .arg(_Crc, 19, 'e', 12) .arg(_omega, 19, 'e', 12) .arg(_OMEGADOT, 19, 'e', 12); int dataSource = 0; int SVhealth = 0; double BGD_1_5A = _BGD_1_5A; double BGD_1_5B = _BGD_1_5B; if (_fnav) { dataSource |= (1<<1); dataSource |= (1<<8); BGD_1_5B = 0.0; // SVhealth // Bit 3 : E5a DVS if (_e5aDataInValid) { SVhealth |= (1<<3); } // Bit 4-5: E5a HS if (_E5aHS == 1.0) { SVhealth |= (1<<4); } else if (_E5aHS == 2.0) { SVhealth |= (1<<5); } else if (_E5aHS == 3.0) { SVhealth |= (1<<4); SVhealth |= (1<<5); } } else if(_inav) { // Bit 2 and 0 are set because from MT1046 the data source cannot be determined // and RNXv3.03 says both can be set if the navigation messages were merged dataSource |= (1<<0); dataSource |= (1<<2); dataSource |= (1<<9); // SVhealth // Bit 0 : E1-B DVS if (_e1DataInValid) { SVhealth |= (1<<0); } // Bit 1-2: E1-B HS if (_E1_bHS == 1.0) { SVhealth |= (1<<1); } else if (_E1_bHS == 2.0) { SVhealth |= (1<<2); } else if (_E1_bHS == 3.0) { SVhealth |= (1<<1); SVhealth |= (1<<2); } // Bit 3 : E5a DVS if (_e5aDataInValid) { SVhealth |= (1<<3); } // Bit 4-5: E5a HS if (_E5aHS == 1.0) { SVhealth |= (1<<4); } else if (_E5aHS == 2.0) { SVhealth |= (1<<5); } else if (_E5aHS == 3.0) { SVhealth |= (1<<4); SVhealth |= (1<<5); } // Bit 6 : E5b DVS if (_e5bDataInValid) { SVhealth |= (1<<6); } // Bit 7-8: E5b HS if (_E5bHS == 1.0) { SVhealth |= (1<<7); } else if (_E5bHS == 2.0) { SVhealth |= (1<<8); } else if (_E5bHS == 3.0) { SVhealth |= (1<<7); SVhealth |= (1<<8); } } out << QString(fmt) .arg(_IDOT, 19, 'e', 12) .arg(double(dataSource), 19, 'e', 12) .arg(_TOEweek + 1024.0, 19, 'e', 12) .arg(0.0, 19, 'e', 12); out << QString(fmt) .arg(_SISA, 19, 'e', 12) .arg(double(SVhealth), 19, 'e', 12) .arg(BGD_1_5A, 19, 'e', 12) .arg(BGD_1_5B, 19, 'e', 12); double tot = _TOT; if (tot == 0.9999e9 && version < 3.0) { tot = 0.0; } out << QString(fmt) .arg(tot, 19, 'e', 12) .arg("", 19, QChar(' ')) .arg("", 19, QChar(' ')) .arg("", 19, QChar(' ')); return rnxStr; } // Constructor ////////////////////////////////////////////////////////////////////////////// t_ephSBAS::t_ephSBAS(float rnxVersion, const QStringList& lines) { const int nLines = 4; if (lines.size() != nLines) { _checkState = bad; return; } // RINEX Format // ------------ int fieldLen = 19; int pos[4]; pos[0] = (rnxVersion <= 2.12) ? 3 : 4; pos[1] = pos[0] + fieldLen; pos[2] = pos[1] + fieldLen; pos[3] = pos[2] + fieldLen; // Read four lines // --------------- for (int iLine = 0; iLine < nLines; iLine++) { QString line = lines[iLine]; if ( iLine == 0 ) { QTextStream in(line.left(pos[1]).toAscii()); int year, month, day, hour, min; double sec; QString prnStr, n; in >> prnStr; if (prnStr.size() == 1 && prnStr[0] == 'S') { in >> n; prnStr.append(n); } in >> year >> month >> day >> hour >> min >> sec; if (prnStr.at(0) == 'S') { _prn.set('S', prnStr.mid(1).toInt()); } else { _prn.set('S', prnStr.toInt()); } if (year < 80) { year += 2000; } else if (year < 100) { year += 1900; } _TOC.set(year, month, day, hour, min, sec); if ( readDbl(line, pos[1], fieldLen, _agf0 ) || readDbl(line, pos[2], fieldLen, _agf1 ) || readDbl(line, pos[3], fieldLen, _TOT ) ) { _checkState = bad; return; } } else if ( iLine == 1 ) { if ( readDbl(line, pos[0], fieldLen, _x_pos ) || readDbl(line, pos[1], fieldLen, _x_velocity ) || readDbl(line, pos[2], fieldLen, _x_acceleration) || readDbl(line, pos[3], fieldLen, _health ) ) { _checkState = bad; return; } } else if ( iLine == 2 ) { if ( readDbl(line, pos[0], fieldLen, _y_pos ) || readDbl(line, pos[1], fieldLen, _y_velocity ) || readDbl(line, pos[2], fieldLen, _y_acceleration ) || readDbl(line, pos[3], fieldLen, _ura ) ) { _checkState = bad; return; } } else if ( iLine == 3 ) { double iodn; if ( readDbl(line, pos[0], fieldLen, _z_pos ) || readDbl(line, pos[1], fieldLen, _z_velocity ) || readDbl(line, pos[2], fieldLen, _z_acceleration) || readDbl(line, pos[3], fieldLen, iodn ) ) { _checkState = bad; return; } else { _IODN = int(iodn); } } } _x_pos *= 1.e3; _y_pos *= 1.e3; _z_pos *= 1.e3; _x_velocity *= 1.e3; _y_velocity *= 1.e3; _z_velocity *= 1.e3; _x_acceleration *= 1.e3; _y_acceleration *= 1.e3; _z_acceleration *= 1.e3; } // IOD of SBAS Ephemeris (virtual) //////////////////////////////////////////////////////////////////////////// unsigned int t_ephSBAS::IOD() const { unsigned char buffer[80]; int size = 0; int numbits = 0; long long bitbuffer = 0; unsigned char *startbuffer = buffer; SBASADDBITSFLOAT(30, this->_x_pos, 0.08) SBASADDBITSFLOAT(30, this->_y_pos, 0.08) SBASADDBITSFLOAT(25, this->_z_pos, 0.4) SBASADDBITSFLOAT(17, this->_x_velocity, 0.000625) SBASADDBITSFLOAT(17, this->_y_velocity, 0.000625) SBASADDBITSFLOAT(18, this->_z_velocity, 0.004) SBASADDBITSFLOAT(10, this->_x_acceleration, 0.0000125) SBASADDBITSFLOAT(10, this->_y_acceleration, 0.0000125) SBASADDBITSFLOAT(10, this->_z_acceleration, 0.0000625) SBASADDBITSFLOAT(12, this->_agf0, 1.0/static_cast(1<<30)/static_cast(1<<1)) SBASADDBITSFLOAT(8, this->_agf1, 1.0/static_cast(1<<30)/static_cast(1<<10)) SBASADDBITS(5,0); // the last byte is filled by 0-bits to obtain a length of an integer multiple of 8 return CRC24(size, startbuffer); } // Compute SBAS Satellite Position (virtual) //////////////////////////////////////////////////////////////////////////// t_irc t_ephSBAS::position(int GPSweek, double GPSweeks, double* xc, double* vv) const { bncTime tt(GPSweek, GPSweeks); double dt = tt - _TOC; xc[0] = _x_pos + _x_velocity * dt + _x_acceleration * dt * dt / 2.0; xc[1] = _y_pos + _y_velocity * dt + _y_acceleration * dt * dt / 2.0; xc[2] = _z_pos + _z_velocity * dt + _z_acceleration * dt * dt / 2.0; vv[0] = _x_velocity + _x_acceleration * dt; vv[1] = _y_velocity + _y_acceleration * dt; vv[2] = _z_velocity + _z_acceleration * dt; xc[3] = _agf0 + _agf1 * dt; xc[4] = _agf1; xc[5] = 0.0; return success; } // RINEX Format String ////////////////////////////////////////////////////////////////////////////// QString t_ephSBAS::toString(double version) const { QString rnxStr = rinexDateStr(_TOC, _prn, version); QTextStream out(&rnxStr); out << QString("%1%2%3\n") .arg(_agf0, 19, 'e', 12) .arg(_agf1, 19, 'e', 12) .arg(_TOT, 19, 'e', 12); QString fmt = version < 3.0 ? " %1%2%3%4\n" : " %1%2%3%4\n"; out << QString(fmt) .arg(1.e-3*_x_pos, 19, 'e', 12) .arg(1.e-3*_x_velocity, 19, 'e', 12) .arg(1.e-3*_x_acceleration, 19, 'e', 12) .arg(_health, 19, 'e', 12); out << QString(fmt) .arg(1.e-3*_y_pos, 19, 'e', 12) .arg(1.e-3*_y_velocity, 19, 'e', 12) .arg(1.e-3*_y_acceleration, 19, 'e', 12) .arg(_ura, 19, 'e', 12); out << QString(fmt) .arg(1.e-3*_z_pos, 19, 'e', 12) .arg(1.e-3*_z_velocity, 19, 'e', 12) .arg(1.e-3*_z_acceleration, 19, 'e', 12) .arg(double(_IODN), 19, 'e', 12); return rnxStr; } // Constructor ////////////////////////////////////////////////////////////////////////////// t_ephBDS::t_ephBDS(float rnxVersion, const QStringList& lines) { const int nLines = 8; if (lines.size() != nLines) { _checkState = bad; return; } // RINEX Format // ------------ int fieldLen = 19; int pos[4]; pos[0] = (rnxVersion <= 2.12) ? 3 : 4; pos[1] = pos[0] + fieldLen; pos[2] = pos[1] + fieldLen; pos[3] = pos[2] + fieldLen; // Read eight lines // ---------------- for (int iLine = 0; iLine < nLines; iLine++) { QString line = lines[iLine]; if ( iLine == 0 ) { QTextStream in(line.left(pos[1]).toAscii()); int year, month, day, hour, min; double sec; QString prnStr, n; in >> prnStr; if (prnStr.size() == 1 && prnStr[0] == 'C') { in >> n; prnStr.append(n); } in >> year >> month >> day >> hour >> min >> sec; if (prnStr.at(0) == 'C') { _prn.set('C', prnStr.mid(1).toInt()); } else { _prn.set('C', prnStr.toInt()); } if (year < 80) { year += 2000; } else if (year < 100) { year += 1900; } _TOC.setBDS(year, month, day, hour, min, sec); if ( readDbl(line, pos[1], fieldLen, _clock_bias ) || readDbl(line, pos[2], fieldLen, _clock_drift ) || readDbl(line, pos[3], fieldLen, _clock_driftrate) ) { _checkState = bad; return; } } else if ( iLine == 1 ) { double aode; if ( readDbl(line, pos[0], fieldLen, aode ) || readDbl(line, pos[1], fieldLen, _Crs ) || readDbl(line, pos[2], fieldLen, _Delta_n) || readDbl(line, pos[3], fieldLen, _M0 ) ) { _checkState = bad; return; } _AODE = int(aode); } else if ( iLine == 2 ) { if ( readDbl(line, pos[0], fieldLen, _Cuc ) || readDbl(line, pos[1], fieldLen, _e ) || readDbl(line, pos[2], fieldLen, _Cus ) || readDbl(line, pos[3], fieldLen, _sqrt_A) ) { _checkState = bad; return; } } else if ( iLine == 3 ) { if ( readDbl(line, pos[0], fieldLen, _TOEsec ) || readDbl(line, pos[1], fieldLen, _Cic ) || readDbl(line, pos[2], fieldLen, _OMEGA0) || readDbl(line, pos[3], fieldLen, _Cis ) ) { _checkState = bad; return; } } else if ( iLine == 4 ) { if ( readDbl(line, pos[0], fieldLen, _i0 ) || readDbl(line, pos[1], fieldLen, _Crc ) || readDbl(line, pos[2], fieldLen, _omega ) || readDbl(line, pos[3], fieldLen, _OMEGADOT) ) { _checkState = bad; return; } } else if ( iLine == 5 ) { if ( readDbl(line, pos[0], fieldLen, _IDOT ) || readDbl(line, pos[2], fieldLen, _TOEweek)) { _checkState = bad; return; } } else if ( iLine == 6 ) { double SatH1; if ( readDbl(line, pos[0], fieldLen, _URA ) || readDbl(line, pos[1], fieldLen, SatH1) || readDbl(line, pos[2], fieldLen, _TGD1) || readDbl(line, pos[3], fieldLen, _TGD2) ) { _checkState = bad; return; } _SatH1 = int(SatH1); } else if ( iLine == 7 ) { double aodc; if ( readDbl(line, pos[0], fieldLen, _TOT) || readDbl(line, pos[1], fieldLen, aodc) ) { _checkState = bad; return; } if (_TOT == 0.9999e9) { // 0.9999e9 means not known (RINEX standard) _TOT = _TOEsec; } _AODC = int(aodc); } } _TOE.setBDS(int(_TOEweek), _TOEsec); // remark: actually should be computed from second_tot // but it seems to be unreliable in RINEX files //_TOT = _TOC.bdssec(); } // IOD of BDS Ephemeris (virtual) //////////////////////////////////////////////////////////////////////////// unsigned int t_ephBDS::IOD() const { unsigned char buffer[80]; int size = 0; int numbits = 0; long long bitbuffer = 0; unsigned char *startbuffer = buffer; BDSADDBITSFLOAT(14, this->_IDOT, M_PI/static_cast(1<<30)/static_cast(1<<13)) BDSADDBITSFLOAT(11, this->_clock_driftrate, 1.0/static_cast(1<<30) /static_cast(1<<30)/static_cast(1<<6)) BDSADDBITSFLOAT(22, this->_clock_drift, 1.0/static_cast(1<<30)/static_cast(1<<20)) BDSADDBITSFLOAT(24, this->_clock_bias, 1.0/static_cast(1<<30)/static_cast(1<<3)) BDSADDBITSFLOAT(18, this->_Crs, 1.0/static_cast(1<<6)) BDSADDBITSFLOAT(16, this->_Delta_n, M_PI/static_cast(1<<30)/static_cast(1<<13)) BDSADDBITSFLOAT(32, this->_M0, M_PI/static_cast(1<<30)/static_cast(1<<1)) BDSADDBITSFLOAT(18, this->_Cuc, 1.0/static_cast(1<<30)/static_cast(1<<1)) BDSADDBITSFLOAT(32, this->_e, 1.0/static_cast(1<<30)/static_cast(1<<3)) BDSADDBITSFLOAT(18, this->_Cus, 1.0/static_cast(1<<30)/static_cast(1<<1)) BDSADDBITSFLOAT(32, this->_sqrt_A, 1.0/static_cast(1<<19)) BDSADDBITSFLOAT(18, this->_Cic, 1.0/static_cast(1<<30)/static_cast(1<<1)) BDSADDBITSFLOAT(32, this->_OMEGA0, M_PI/static_cast(1<<30)/static_cast(1<<1)) BDSADDBITSFLOAT(18, this->_Cis, 1.0/static_cast(1<<30)/static_cast(1<<1)) BDSADDBITSFLOAT(32, this->_i0, M_PI/static_cast(1<<30)/static_cast(1<<1)) BDSADDBITSFLOAT(18, this->_Crc, 1.0/static_cast(1<<6)) BDSADDBITSFLOAT(32, this->_omega, M_PI/static_cast(1<<30)/static_cast(1<<1)) BDSADDBITSFLOAT(24, this->_OMEGADOT, M_PI/static_cast(1<<30)/static_cast(1<<13)) BDSADDBITS(5, 0) // the last byte is filled by 0-bits to obtain a length of an integer multiple of 8 return CRC24(size, startbuffer); } // Compute BDS Satellite Position (virtual) ////////////////////////////////////////////////////////////////////////////// t_irc t_ephBDS::position(int GPSweek, double GPSweeks, double* xc, double* vv) const { static const double gmBDS = 398.6004418e12; static const double omegaBDS = 7292115.0000e-11; xc[0] = xc[1] = xc[2] = xc[3] = 0.0; vv[0] = vv[1] = vv[2] = 0.0; bncTime tt(GPSweek, GPSweeks); if (_sqrt_A == 0) { return failure; } double a0 = _sqrt_A * _sqrt_A; double n0 = sqrt(gmBDS/(a0*a0*a0)); double tk = tt - _TOE; double n = n0 + _Delta_n; double M = _M0 + n*tk; double E = M; double E_last; int nLoop = 0; do { E_last = E; E = M + _e*sin(E); if (++nLoop == 100) { return failure; } } while ( fabs(E-E_last)*a0 > 0.001 ); double v = atan2(sqrt(1-_e*_e) * sin(E), cos(E) - _e); double u0 = v + _omega; double sin2u0 = sin(2*u0); double cos2u0 = cos(2*u0); double r = a0*(1 - _e*cos(E)) + _Crc*cos2u0 + _Crs*sin2u0; double i = _i0 + _IDOT*tk + _Cic*cos2u0 + _Cis*sin2u0; double u = u0 + _Cuc*cos2u0 + _Cus*sin2u0; double xp = r*cos(u); double yp = r*sin(u); double toesec = (_TOE.gpssec() - 14.0); double sinom = 0; double cosom = 0; double sini = 0; double cosi = 0; // Velocity // -------- double tanv2 = tan(v/2); double dEdM = 1 / (1 - _e*cos(E)); double dotv = sqrt((1.0 + _e)/(1.0 - _e)) / cos(E/2)/cos(E/2) / (1 + tanv2*tanv2) * dEdM * n; double dotu = dotv + (-_Cuc*sin2u0 + _Cus*cos2u0)*2*dotv; double doti = _IDOT + (-_Cic*sin2u0 + _Cis*cos2u0)*2*dotv; double dotr = a0 * _e*sin(E) * dEdM * n + (-_Crc*sin2u0 + _Crs*cos2u0)*2*dotv; double dotx = dotr*cos(u) - r*sin(u)*dotu; double doty = dotr*sin(u) + r*cos(u)*dotu; const double iMaxGEO = 10.0 / 180.0 * M_PI; // MEO/IGSO satellite // ------------------ if (_i0 > iMaxGEO) { double OM = _OMEGA0 + (_OMEGADOT - omegaBDS)*tk - omegaBDS*toesec; sinom = sin(OM); cosom = cos(OM); sini = sin(i); cosi = cos(i); xc[0] = xp*cosom - yp*cosi*sinom; xc[1] = xp*sinom + yp*cosi*cosom; xc[2] = yp*sini; // Velocity // -------- double dotom = _OMEGADOT - t_CST::omega; vv[0] = cosom *dotx - cosi*sinom *doty // dX / dr - xp*sinom*dotom - yp*cosi*cosom*dotom // dX / dOMEGA + yp*sini*sinom*doti; // dX / di vv[1] = sinom *dotx + cosi*cosom *doty + xp*cosom*dotom - yp*cosi*sinom*dotom - yp*sini*cosom*doti; vv[2] = sini *doty + yp*cosi *doti; } // GEO satellite // ------------- else { double OM = _OMEGA0 + _OMEGADOT*tk - omegaBDS*toesec; double ll = omegaBDS*tk; sinom = sin(OM); cosom = cos(OM); sini = sin(i); cosi = cos(i); double xx = xp*cosom - yp*cosi*sinom; double yy = xp*sinom + yp*cosi*cosom; double zz = yp*sini; Matrix RX = BNC_PPP::t_astro::rotX(-5.0 / 180.0 * M_PI); Matrix RZ = BNC_PPP::t_astro::rotZ(ll); ColumnVector X1(3); X1 << xx << yy << zz; ColumnVector X2 = RZ*RX*X1; xc[0] = X2(1); xc[1] = X2(2); xc[2] = X2(3); double dotom = _OMEGADOT; double vx = cosom *dotx - cosi*sinom *doty - xp*sinom*dotom - yp*cosi*cosom*dotom + yp*sini*sinom*doti; double vy = sinom *dotx + cosi*cosom *doty + xp*cosom*dotom - yp*cosi*sinom*dotom - yp*sini*cosom*doti; double vz = sini *doty + yp*cosi *doti; ColumnVector V(3); V << vx << vy << vz; Matrix RdotZ(3,3); double C = cos(ll); double S = sin(ll); Matrix UU(3,3); UU[0][0] = -S; UU[0][1] = +C; UU[0][2] = 0.0; UU[1][0] = -C; UU[1][1] = -S; UU[1][2] = 0.0; UU[2][0] = 0.0; UU[2][1] = 0.0; UU[2][2] = 0.0; RdotZ = omegaBDS * UU; ColumnVector VV(3); VV = RZ*RX*V + RdotZ*RX*X1; vv[0] = VV(1); vv[1] = VV(2); vv[2] = VV(3); } double tc = tt - _TOC; xc[3] = _clock_bias + _clock_drift*tc + _clock_driftrate*tc*tc; // dotC = _clock_drift + _clock_driftrate*tc // - 4.442807633e-10*_e*sqrt(a0)*cos(E) * dEdM * n; // Relativistic Correction // ----------------------- // correspondent to BDS ICD and to SSR standard xc[3] -= 4.442807633e-10 * _e * sqrt(a0) *sin(E); // correspondent to IGS convention // xc[3] -= 2.0 * (xc[0]*vv[0] + xc[1]*vv[1] + xc[2]*vv[2]) / t_CST::c / t_CST::c; xc[4] = _clock_drift + _clock_driftrate*tc; xc[5] = _clock_driftrate; return success; } // RINEX Format String ////////////////////////////////////////////////////////////////////////////// QString t_ephBDS::toString(double version) const { QString rnxStr = rinexDateStr(_TOC-14.0, _prn, version); QTextStream out(&rnxStr); out << QString("%1%2%3\n") .arg(_clock_bias, 19, 'e', 12) .arg(_clock_drift, 19, 'e', 12) .arg(_clock_driftrate, 19, 'e', 12); QString fmt = version < 3.0 ? " %1%2%3%4\n" : " %1%2%3%4\n"; out << QString(fmt) .arg(double(_AODE), 19, 'e', 12) .arg(_Crs, 19, 'e', 12) .arg(_Delta_n, 19, 'e', 12) .arg(_M0, 19, 'e', 12); out << QString(fmt) .arg(_Cuc, 19, 'e', 12) .arg(_e, 19, 'e', 12) .arg(_Cus, 19, 'e', 12) .arg(_sqrt_A, 19, 'e', 12); double toes = 0.0; if (_TOEweek > -1.0) {// RINEX input toes = _TOEsec; } else {// RTCM stream input toes = _TOE.bdssec(); } out << QString(fmt) .arg(toes, 19, 'e', 12) .arg(_Cic, 19, 'e', 12) .arg(_OMEGA0, 19, 'e', 12) .arg(_Cis, 19, 'e', 12); out << QString(fmt) .arg(_i0, 19, 'e', 12) .arg(_Crc, 19, 'e', 12) .arg(_omega, 19, 'e', 12) .arg(_OMEGADOT, 19, 'e', 12); double toew = 0.0; if (_TOEweek > -1.0) {// RINEX input toew = _TOEweek; } else {// RTCM stream input toew = double(_TOE.bdsw()); } out << QString(fmt) .arg(_IDOT, 19, 'e', 12) .arg(0.0, 19, 'e', 12) .arg(toew, 19, 'e', 12) .arg(0.0, 19, 'e', 12); out << QString(fmt) .arg(_URA, 19, 'e', 12) .arg(double(_SatH1), 19, 'e', 12) .arg(_TGD1, 19, 'e', 12) .arg(_TGD2, 19, 'e', 12); double tots = 0.0; if (_TOEweek > -1.0) {// RINEX input tots = _TOT; } else {// RTCM stream input tots = _TOE.bdssec(); } out << QString(fmt) .arg(tots, 19, 'e', 12) .arg(double(_AODC), 19, 'e', 12) .arg("", 19, QChar(' ')) .arg("", 19, QChar(' ')); return rnxStr; }